a2 United States Patent

Greenberg et al.

US009285977B1

US 9,285,977 B1
Mar. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(63)

(60)

(1)

CARD BASED PACKAGE FOR
DISTRIBUTING ELECTRONIC MEDIA AND
SERVICES

Applicant: Wrap Media, LL.C, Larkspur, CA (US)

Inventors: Eric H. Greenberg, Ross, CA (US); Ian
McFarland, San Francisco, CA (US);
John M. Garris, San Francisco, CA
(US); Mark E. Rolston, Austin, TX
(US); Jared L. Ficklin, Austin, TX
(US); Matthew J. Santone, Austin, TX
(US); Jon Stevens, San Francisco, CA

(US)

Assignee: Wrap Media, LL.C, San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/678,316

Filed: Apr. 3,2015

Related U.S. Application Data

Continuation of application No. 14/669,395, filed on
Mar. 26, 2015.

Provisional application No. 62/062,056, filed on Oct.
9, 2014, provisional application No. 62/062,061, filed
on Oct. 9, 2014, provisional application No.
62/084,171, filed on Nov. 25, 2014, provisional
application No. 62/091,866, filed on Dec. 15, 2014,
provisional application No. 62/114,675, filed on Feb.
11, 2015, provisional application No. 62/133,574,
filed on Mar. 16, 2015.

Int. Cl1.

GO6F 17/00 (2006.01)
GO6F 3/0485 (2013.01)
GO6F 3/0484 (2013.01)
GO6F 3/0481 (2013.01)

(52) US.CL
CPC ... GO6F 3/0485 (2013.01); GO6F 3/04817
(2013.01); GOGF 3/04842 (2013.01)
(58) Field of Classification Search

CPC GO06Q 30/02; GOGF 3/0482
USPC 715/243, 200, 235, 234, 204
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,321,244 B1 11/2001 Liuet al.
2005/0022116 Al 1/2005 Bowman et al.
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 14/669,395, filed Mar. 26, 2015.
(Continued)

Primary Examiner — Manglesh M Patel
(74) Attorney, Agent, or Firm — Beyer Law Group LLP

&7

A variety of data structures, components, runtime viewers
and methods are described for defining, delivering and ren-
dering wrapped packages of cards in a manner that is particu-
larly well suited, but not limited to, display on mobile devices.
Each card may selectively include media content, and a pal-
ette of application functionality and/or supporting e-com-
merce related services. The cards of the wrap packages are
ideally threaded together into one or more linear sequences,
and authored to convey a book-like narrative that unfolds as
the cards are sequentially browsed. In addition, the wrap
packages are portable objects that are readily distributed,
similar to other electronic messages, through e-mail, messag-
ing, social-media, or via a variety of other electronic commu-
nication platforms. As a result, wrap packages are consum-
able, sharable and savable objects.

ABSTRACT

30 Claims, 43 Drawing Sheets

Images]
Location/
Text Gallery PE;(c‘turoers Video Buy Schedule| | Approve Input og?:g)
=N | — | e | 2= o~
q = 8 ||E|@|w
”””””” [©) 7 7 7 i
7N |
14A5 14C§ 140) 148/ 14FJ 14G7 (14N7

]
{148

14y

US 9,285,977 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2007/0028166 Al* 2/2007 Hundhausen GO6F 17/212
715/205
2007/0208704 Al
2007/0232399 Al
2008/0077852 Al
2009/0119615 Al
2010/0070876 Al
2011/0214075 Al
2012/0278704 Al
2013/0021377 Al
2013/0024757 Al
2013/0061160 Al
2013/0097186 Al
2013/0099447 Al*

9/2007 TIves
10/2007 Kathman et al.

3/2008 Fleishman et al.

5/2009 Huang

3/2010 Jain et al.

9/2011 Vongphouthone et al.
11/2012 Ying et al.

1/2013 Doll

1/2013 Doll et al.

3/2013 Tseng

4/2013 Van Hoff

4/2013 Pattonccoeee AG63F 1/02

273/293

2013/0111395 Al
2013/0151959 Al
2013/0219255 Al
2013/0254063 Al*

5/2013 Ying et al.

6/2013 Flynn, III et al.

8/2013 Van Hoff et al.

9/2013 Stone G06Q 30/0603
705/26.5

2013/0254705 Al

2014/0074624 Al

2014/0074863 Al

2014/0074934 Al

2014/0075275 Al

2014/0075289 Al

2014/0075339 Al

2014/0089789 Al*

9/2013 Mooring et al.

3/2014 Ying et al.

3/2014 Walkingshaw et al.

3/2014 Van Hoff et al.

3/2014 Aleksandrovsky et al.

3/2014 Brant

3/2014 Weskamp et al.

3/2014 Schowtka GOG6F 17/212
715/243

2014/0096014 Al 4/2014 Johnson et al.

2014/0173417 Al 6/2014 He
2014/0198127 Al 7/2014 Ying
2014/0210843 Al* 7/2014 VanCuren, Jr. ... GO6T 11/001

345/589
2014/0245128 A9
2014/0320535 Al
2014/0351268 Al 11/2014 Weskamp et al.
2015/0100587 Al 4/2015 Walkingshaw et al.

OTHER PUBLICATIONS

8/2014 Brant
10/2014 Ying

U.S. Appl. No. 14/678,330, filed Apr. 3, 2015.

U.S. Appl. No. 14/678,337, filed Apr. 3, 2015.

U.S. Appl. No. 14/678,308, filed Apr. 3, 2015.

Sarah Sluis, “Harper’s Bazaar Pursues Shoppable Ads With
Streamwize”, http://adexchanger.com/publishers/harpers-bazaar-
pursues-shoppable-ads-with-streamwize/, Jul. 24, 2014, down-
loaded on May 22, 2015.

Paul Adams, “The End of Apps as We Know Them”, https://blog.
intercom.io/the-end-of-apps-as-we-know-them/, published around
Nov. 2014, downloaded on May 22, 2015.

Paul Adams, “Why Cards are the Future of the Web”, https://blog.
intercom.io/why-cards-are-the-future-of-the-web/, published
around Sep. 2013, downloaded on May 22, 2015.

Allison Schiff, “Sharethrough Brings Its Version of Twitter Cards to
the Masses”, http://adexchanger.com/native-advertising-2/
sharethrough-brings-its-version-of-twitter-cards-to-the-masses/,
Dec. 17, 2014, downloaded on May 26, 2015.

Sarah Perez, “Storytelling App Steller Becomes More of a Social
Network”, http://techcrunch.com/2014/08/2 1/storytelling-app-
steller-becomes-more-of-a-social-network/, Aug. 21, 2014, down-
loaded on May 26, 2015.

Kaylene Hong, “Steller is a Beautiful Visual Storytelling App, Simi-
lar to Storehouse, but for Your iPhone Instead”, http://thenextweb.
com/apps/2014/03/13/steller-is-a-beautiful-visual-storytelling-app-
similar-to-storehouse-but-for-your-iphone-instead/, Mar. 13, 2014,
downloaded on May 27, 2015.

Jayanth Prathipati, “Why Do All Mobile Roads Lead Back to the
Palm Pre?”, http://thetechblock.com/mobile-roads-lead-back-palm-
pre/, published on Jun. 11, 2014, downloaded on May 27, 2015.
Pictela, “Introduction to Pictela”, http://www.pictela.com/docs/get-
ting-started/introduction-to-pictela, from Wayback Machine indicat-
ing Wayback retrieval date of Mar. 18, 2015, downloaded on Jun. 5,
2015. (Pictela_ Intro).

Pictela, https://web.archive.org/web/20130908132533/http://www.
pictela.com/formats, from Wayback Machine indicating Wayback
retrieval date of Sep. 8, 2013, downloaded on Jun. 5, 2015. (Pictela__
Formats).

Twitter, https://web.archive.org/web/20150324121730/https://dev.
twitter.com/cards/getting-started, from Wayback Machine indicating
Wayback retrieval date of Mar. 24, 2015, downloaded on Jun. 5,2015.
(Twitter_Getting__ Started).

Twitter, https://web.archive.org/web/20140929154946/https://dev.
twitter.com/cards/overview, from Wayback Machine indicating
Wayback retrieval date of Sep. 29, 2014, downloaded on Jun. 5,2015.
(Twitter _Overview).

Max Bulger, “Why Cards?”, http://blog.trywildcard.com/post/
93983166893 /why-cards, published on Aug. 6,2014, downloaded on
May 26, 2015.

Streamwize, http://www.streamwize.com, downloaded on May 22,
2015. (Streamwize).

Streamwize, https://web.archive.org/web/20141222085204/http://
www.streamwize.com/#introduction, from Wayback Machine indi-
cating Wayback retrieval date of Dec. 22, 2014, downloaded on Jun.
S5, 2015. (Streamwize V2).

Steller, “Everyone has a story to tell. Tell yours with photos, videos
and texts”, https://steller.co, from Wayback Machine indicating
Wayback retrieval date of Apr. 5, 2014, downloaded on Jun. 5, 2015.
Max Bulger, “Introducing the Wildcard iOS SDK”, http://blog.
trywildcard.com/, Feb. 23, 2015, downloaded on May 26, 2015.
Wildcard, http://www.trywildcard.com/, from Wayback Machine
indicating Wayback retrieval date of Feb. 8, 2014, downloaded on
Jun. 5, 2015. (WC__homepage).

Wildcard, https://web.archive.org/web/20141115090135/http://
www.trywildcard.com/docs/intro, from Wayback Machine indicat-
ing Wayback retrieval date of Nov. 15, 2014, downloaded on Jun. 5,
2015. (intro V1).

Wildcard, https://web.archive.org/web/20150321155952/http://
www.trywildcard.com/docs/intro, from Wayback Machine indicat-
ing Wayback retrieval date of Mar. 21, 2015, downloaded on Jun. 5,
2015. (intro V2).

Wildcard, https://web.archive.org/web/20141115171158/http://
www.trywildcard.com/docs/overview, from Wayback Machine indi-
cating Wayback retrieval date of Nov. 15, 2014, downloaded on Jun.
5, 2015. (arch Overview V1).

Wildcard, https://web.archive.org/web/20150321162417/http://
www.trywildcard.com/docs/ overview, from Wayback Machine indi-
cating Wayback retrieval date of Mar. 21, 2015, downloaded on Jun.
5, 2015. (arch overview V2).

Wildcard, https://web.archive.org/web/20150520042344/http://
www.trywildcard.com/docs/overview/, from Wayback Machine
indicating Wayback retrieval date of May 20, 2015, downloaded on
Jun. 5, 2015. (arch overview V3).

Wildcard, https://web.archive.org/web/20141115090625/http://
www.trywildcard.com/docs/sdk/quickstart_sdk, from Wayback
Machine indicating Wayback retrieval date of Nov. 15, 2014, down-
loaded on Jun. 5, 2015. (SDK_QS_V1).

Wildcard, https://web.archive.org/web/20150321172000/http://
www.trywildcard.com/docs/sdk/quickstart_sdk, from Wayback
Machine indicating Wayback retrieval date of Mar. 21, 2015, down-
loaded on Jun. 5, 2015. (SDK_QS_V2).

Wildcard, https ://web.archive.org/web/20141115090143/http://
www.trywildcard.com/docs/sdk/java_ sdk, from Wayback Machine
indicating Wayback retrieval date of Nov. 15, 2014, downloaded on
Jun. 5, 2015. (WC_Java_V1).

Wildcard, https://web.archive.org/web/20150321184716/http://
www.trywildcard.com/docs/sdk/java_ sdk, from Wayback Machine
indicating Wayback retrieval date of Mar. 21, 2015, downloaded on
Jun. 5, 2015. (WC__Java_ V2).

Wildcard, https://web.archive.org/web/20141115090150/http://
www.trywildcard.com/docs/sdk/ruby__sdk, from Wayback Machine
indicating Wayback retrieval date of Nov. 15, 2014, downloaded on
Jun. 5, 2015. (WC_Ruby_V2).

Wildcard, https ://web.archive.org/web/20150321180400/http://
www.trywildcard.com/docs/sdk/ruby__sdk, from Wayback Machine
indicating Wayback retrieval date of Mar. 21, 2015, downloaded on
Jun. 5, 2015. (WC_Ruby).

US 9,285,977 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS
Wildcard, https://web.archive.org/web/20141115090647/http://

www.trywildcard.com/partners, from Wayback Machine indicating
Wayback retrieval date of Nov. 15, 2014, downloaded on Jun. 5,
2015. (WC__Partners_V1).

Wildcard, https://web.archive.org/web/20150315070647/http://
www.trywildcard.com/partners, from Wayback Machine indicating
Wayback retrieval date of Mar. 15,2015, downloaded on Jun. 5,2015.
(WC_Partners_ V2).

Wildcard, https://web.archive.org/web/20141126020058/http://
www.trywildcard.com/docs/faq/, from Wayback Machine indicating
Wayback retrieval date of Nov. 26, 2014, downloaded on Jun. 5,
2015. (FAQ_V1).

Wildcard, https://web.archive.org/web/20150512091432/http://
www.trywildcard.com/docs/ios-sdk/tutorials, from Wayback
Machine indicating Wayback retrieval date of May 12, 2015, down-
loaded on Jun. 5, 2015. (WC_IOS_ Tutorials_ V1).

Wildcard, https ://web.archive.org/web/20150512091432/http://
www.trywildcard.com/docs/ios-sdk/tutorials, from Wayback
Machine indicating Wayback retrieval date of May 12, 2015, down-
loaded on Jun. 5, 2015. (WC_IOS__Sample_ Projects_ V1).
Wildcard, https://web.archive.org/web/20141115171308/http://
www.trywildcard.com/docs/schema, from Wayback Machine indi-

cating Wayback retrieval date of Nov. 15, 2014, downloaded on Jun.
5,2015. (WC_Card__Schema_ V1).

Wildcard, https://web.archive.org/web/20150518060819/http://
www.trywildcard.com/docs/schema, from Wayback Machine indi-
cating Wayback retrieval date of May 18, 2015, downloaded on Jun.
5,2015. (WC__Card_ Schema_ V2).

Wildcard, http://www.trywildcard.com/docs/faq#shopify, not avail-
able on Wayback Machine, downloaded on Jun. 5, 2015. (WC_
FAQ V2).

U.S. Office Action dated Jul. 31, 2015 from U.S. Appl. No.
14/678,330.

Friendly Bit, “Rendering a Web Page—Step by Step”, published on
Jan. 11, 2010.

Hegaret et al., “What is the Document Object Model”, published on
Nov. 7, 2003.

GitHub, “Reading & Writing JSON”, published on Oct. 6, 2013.
U.S. Office Action dated Aug. 13, 2015 from U.S. Appl. No.
14/678,337.

U.S. Office Action dated Aug. 14, 2015 from U.S. Appl. No.
14/678,308.

U.S. Final Office Action dated Dec. 1, 2015 from U.S. Appl. No.
14/678,330.

Jacqueline Thomas, A Serious Look at Card Based Design, [retrieved
on Nov. 17, 2015]Retrieved from the internet: http://
webdesignledger.com/card-based-design.Jun. 12, 2014.

* cited by examiner

US 9,285,977 B1

b "OId -

AVl

g

LT
mzi\ M %OS\ mn:l‘ wm::‘ wm::‘ MOS @ M,ﬁl\

Sheet 1 of 43

7

Ol @| B § D&

H__QC_ m>D.:U_Q m_:Umﬁow \A:m O@U_> /m_ L >;_m__mm.u w\ wxmn_..
JUO1B007 v _

Mar. 15, 2016

U.S. Patent

Ry
z

0l

Zyi

US 9,285,977 B1

Sheet 2 0of 43

Mar. 15, 2016

U.S. Patent

¢ Old

SWILSAS €3HLO NOYA

SHIEIHLVYO V1vd d34N1ONd.LSNN

ANV OL V.LVad LNdLNO ANV NOILVYHOILNI
LNdNI LYHL SHOLOINNOD SHOLVHOILNI VIVA AIHNLONYLS
SITINAOW F1gvSN ATISVI NI SATNAOWN FTAISNILXE ANV TNJHIMOd
ALITYNOILONNA d33Q 3S0dX3 NOILONNA
LVHL S103r40 ONIJOHLNY ANVHEIT LININOLINOD ISHIAIA V
INTLNOD VIQIW ¥IHLO .
ANy IALLYN IANTONI SILYIdWIL aINDISIA T1EM TN4ILNVIE ALY
1VHL Sauvo 1n4ILNvag NOISI]
40 NOLLYZYO 3HL S378VN4 ONINOHLNY a3svd JLYIdNIL
1VH1 TO0L ONINOHLNY
advo

L

145

US 9,285,977 B1

Sheet 3 of 43

Mar. 15, 2016

U.S. Patent

SHHOMIIN GV

S3LISEIM

WYHOV1ISNI

00430V

HILLIML

SINS

HYNL

NOILVZITYNOSHd
193r90 Y.1VQ INIDITIALNI
18V1Ld0d d3sve-ano1o
SW3LSAS H3HLO
HL1IM NOILVYHOF1NI
SOILATYNY
I
0L FJOWOVd ANILINOD AN
dVEM
SdVaM

NI3IML3IG ONIXIN

(indyno Jo/pue Indup) V1va

$$

S3ADIAYEIS
JOH3INNOCD

-n

ALIMTVYNOILONNA

NOLLVYOIlddV

X3l

<

O3AIA

&

SOLOHd

‘SN Se o|qeleys ‘sebeyoed |enbip aie deipp

H3SOdNOD
d43sN

US 9,285,977 B1

Sheet 4 of 43

Mar. 15, 2016

U.S. Patent

(SHoHLNY

vm\

9e

NOLLVOVIddV 93M

HHOMINWVYHAS

82

S

INIONT VM

@N\

FAON H3AY3S

0e

U.S. Patent

Mar. 15, 2016

40’\

WRAP PACKAGE DESCRIPTOR

42

44
43\/

45\/

COVER

Sheet 5 of 43

™~ WRAP ID
™~ WRAP NAME/ TITLE
™~ COVER ID

™~ OTHER INFORMATION / METADATA

CARDS
14

(URL)

COMPONENT(S) 16

CONTENT i
17
| 1
[
50 7 TSa
WRAP VIEWER v
TOOLS
NAVIGATION TOOLS -~V
SHARING TOOLS .52
STORING TOOLS 53
E-COMMERCE TOOLS ~_ o4
PRESENTATION ENGINE/TOOLS f~_-9°
SECURITY & ACCESS CONTROL |~
RENDERING ENGINE 5T
APPLICATION FUNCTION(S) ~_28
CARD 60
BEHAVIOR
DEFINITIONS

FIG. 5A

US 9,285,977 B1

REFERENCED
ASSETS
65

U.S. Patent

Mar. 15, 2016 Sheet 6 of 43

40 /\
WRAP PACKAGE DESCRIPTOR

42T~ WRAP ID
44~ WRAP NAME/ TITLE
43—~ COVER ID

45.

™ OTHER INFORMATION / METADATA
46—~ CARD DESCRIPTOR

US 9,285,977 B1

REFERENCED
ASSETS
65

STATE

A

CARDS I
COVER 1
15 COMPONENT(S) 16
(URL) CONTENT i
17
l T
i
507 T™Sa
WRAP VIEWER v
TOOLS
NAVIGATION TOOLS 51
SHARING TOOLS -2
STORING TOOLS ~._03
E-COMMERCE TOOLS ~_ 54
PRESENTATION ENGINE/TOOLS ~.2°
SECURITY & ACCESS CONTROL |~_-26
RENDERING ENGINE ~_ 07
APPLICATION FUNCTION(S) —~_"8
CARD .50
BEHAVIOR
DEFINITIONS

A

» DESCRIPTOR
68

BEHAVIOR
» EXTENSIONS

FIG. 5B

62

U.S. Patent Mar. 15, 2016 Sheet 7 of 43 US 9,285,977 B1

40

=

WRAP PACKAGE DESCRIPTOR

44
42 _L~WRAP ID WRAP NAME/ TITLE ~
OTHER INFORMATION / METADATA ~_ 45

46 |~ CARD DESCRIPTOR
71— —T~CARD ID: m
73| —T~CARD TYPE:]
75 L —T~LAYOUT:
76| —T"T~LAYOUT ID 7
77| —T"T~LAYOUT NAME
78__|_—tT~LAYOUT DEFINITION (CSS)

:
PINS I 80 .

81——T"TPINID r

82 ——TTPIN NAME I

16 — COMPONENT

86 -—————T—FATTRIBUTES

17—+ CONTENT
87 -+ source |
o3 1t sTYLE
os_| | | |[TBEAAVIOR

— DEGLARATION
[
I

FIG. 6

U.S. Patent Mar. 15, 2016 Sheet 8 of 43 US 9,285,977 B1

‘; 46A
CARD DESCRIPTOR §14

71___—T~CARD ID: -
73___—T~CARD TYPE: -

LAYOUT:
76 —T"T~LAYOUT ID 7
77 T T~LAYOUT NAME
78____—~TT~LAYOUT DEFINITION (CSS)
80 ——PINS
81———T"T-PIN ID al
82 —— 17T~ PIN NAME 1

COMPONENT 6
88 1D]
89 ~TYPE
17 ~"CONTENT"

’ *00

ATTRIBUTES 86
91 ——1 CLASSES I
93 — T [T-CSS
95 — T+~ BEHAVIORS .

ATTRIBUTES 86C
91C ~——T T CLASSES
93C —— T TCSS
95C ————+—~BEHAVIORS vee

1

FIG. 6A

U.S. Patent Mar. 15, 2016 Sheet 9 of 43 US 9,285,977 B1

468

CARD DESCRIPTOR

71___—~—1TCARD ID: -
73— ~CARD TYPE: -
LAYOUT:

76 —T1~LAYOUT ID Itk
77 tLAYOUT NAME
78____—~t—~LAYOUT DEFINITION (CSS)

16
COMPONENTS S
88 ——— T COMPONENT ID a8
84 ~—————— T~ COMPONENT NAME
89 ——— T COMPONENT TYPE
17 —— 1T "CONTENT"
ATTRIBUTES 86
91 —— T T-CLASSES
93 1T TCSS YY) ese
95 ——— T 1BEHAVIORS

ATTRIBUTES 86C

91C —— 1 TCLASSES
93C ——71 T CSS
95C — 1 T1BEHAVIORS

FIG. 6B

US 9,285,977 B1

U.S. Patent Mar. 15, 2016 Sheet 10 of 43
46G
GALLERY CARD DESCRIPTOR -
71G4—"—-CARD ID:
72G+—""CARD NAME:
CARD TYPE:
LAYOUT 756
76G—+—LAYOUT ID
77G—1LAYOUT NAME

~~LAYOUT DEFINITION (CSS)

78G~

91G{———"T+CLASSES
93G+—"T1CSS
95G|——1+BEHAVIORS

91C —+—"TCLASSES

93C—+—1-CSS
95C ——+BEHAVIORS

16G~—— COMPONENT

88G—1 ID:
84G—T~ NAME: Gallery
89G—T~ TYPE: Gallery

COMPONENTS -/ 17G

COMPONENT ../~ 116

88 ——1D:
84 —1 NAME: Gallery Item
89-—1 TYPE: Gallery ltem

COMPONENTS /16

COMPONENT ./~ 16H

88H-—"1D:

84H—+""NAME: headline
8QH~+""TYPE: textline
17H~—TEXT: "Broad Billed"

ATTRIBUTES ™ _ 36

ATTRIBUTES L 86

ATTRIBUTES ™ _ 86

AT'I;RIBUTES B\ 86

ATTRIBUTES 86G

ATTRIBUTES 86C

FIG. 6C

U.S. Patent

Mar. 15, 2016 Sheet 11 of 43

16T

Z

COMPONENT

US 9,285,977 B1

88T —]
84T —
89T —]

88TTH
84TT-
89TT-
1771

91T T—
93TT—
95T T—

88TI—
84TI—
89TI—
87Tl

91TI—
93T
95T

88L—
84L—

89L—+—
17L+—

91L ——1
9L —+—
95L ——

I~ NAME: Transact
— TYPE: Trigger

COMPONENTS 17T

—
l—]
L —
| —
S
]

NE

i

)]

COMPONENTS ./~ 16TT

—ID:

~NAME: Price

~TYPE: Textbox
—TEXT: Pomegranate....

ATTRIBUTES ~86TT

[TBehaviors

COMPONENTS . 16T1

~ID:
~NAME: Buy Button
—~TYPE: Image
—URL
ATTRIBUTES ~_~"86TI

COMPONENT ./~ 16L

~Classes
~CSS
—+Behaviors

—~ID

—NAME: Culdesac
—TYPE: Link

—URL: http://www/....

ATTRIBUTES ~~86L

~+Classes
rCSS
~rBehaviors: [:open-in-new-tab"]

ATTRIBUTES ™ __ 86

ATTRIBUTES
i “_s86T

FIG. 6D

U.S. Patent Mar. 15, 2016 Sheet 12 of 43 US 9,285,977 B1

BROWSE THE COLLECTION 3 1 1

zero diet sweeteners « zero calories
zero preservatives « vegan » gluten-free
non-gmo « all natural 330
L __/

d G |

¥@

599 FIG. 7A

310

\§

U.S. Patent Mar. 15, 2016 Sheet 13 of 43 US 9,285,977 B1

Ever try fruit slices in your waler?
That's how hint *started. 312

f
G

FIG. 7B

U.S. Patent Mar. 15, 2016 Sheet 14 of 43 US 9,285,977 B1

313

Great flavor
from fruit essences,
not sweeteners.

7
g

FIG. 7C

U.S. Patent Mar. 15, 2016 Sheet 15 of 43 US 9,285,977 B1

314
19 delicious infusions T

that will make you fall
in love with water.

FIG. 7D

U.S. Patent

Mar. 15, 2016

Sheet 16 of 43

Delivered straight to your
front door.

FIG. 7TE

US 9,285,977 B1

315

U.S. Patent Mar. 15, 2016 Sheet 17 of 43 US 9,285,977 B1

Hint Water
325
324
\
| 338
316(a)

r
r—jPomeg ranate

$18 for 12 16-ounce bottles
I

f
©

U.S. Patent Mar. 15, 2016 Sheet 18 of 43 US 9,285,977 B1

324

| 316(b)

blackberry | 340
322_/ $1 8 for 12 16-ounce bottles @ } —

U.S. Patent

324

323\/

Mar. 15, 2016 Sheet 19 of 43

blood orange
$1 8 for 12 16-ounce botties

Hint Water

US 9,285,977 B1

325

<o Buy Now }*

338

|| 316()

340

. ©

FIG. 7H

U.S. Patent

Mar. 15, 2016 Sheet 20 of 43

Hint Fizz

peach fizz |
$18 for 12 16-ounce bottles © Buy Now

US 9,285,977 B1

338

| 317(a)

340

@)

FIG. 71

U.S. Patent

Mar. 15, 2016 Sheet 21 of 43 US 9,285,977 B1

338

 317(b)

grapefruit fizz | 340
$18 for 12 16-ounce bottles o Buy Now

\§

FIG. 7J

U.S. Patent

Mar. 15, 2016 Sheet 22 of 43

blackberry fizz

$18 for 12 16-ounce boities

(o Buy Now }~v

. ©

US 9,285,977 B1

338

- 317(0)

340

FIG. 7K

U.S. Patent

Mar. 15, 2016

Sheet 23 0of 43

$18- §16

12 18-ounce bottles/mo.

g RITEA

hint water is water, just more deficious. hint water
and hint fizz have 0 sugar, 0 diet sweeteners, 0 stevia,
0 preservatives, G calories, and 0 gmos. we promote a
policy of G fake. hint is pure wholesome water with
nothing but naturat fruit oifs and essences - now
there's a hinfeentive you can happily drink fof

Subscribe nove and

Save 15%

<3 Subscribe }

o

)

FIG. 7L

US 9,285,977 B1

318

360

U.S. Patent

381~

Mar. 15, 2016 Sheet 24 of 43
O
em—

zero diet sweeteners « zero calories
zero preservatives « vegan- gluten-free

non-gmo « aif naturat

Share

Like Tweet

T
Drink Water, Not Sugar
by Hint Water
4
[Hiike k
™

_/®

US 9,285,977 B1

319

383

Z

382

FIG. 7TM

U.S. Patent Mar. 15, 2016 Sheet 25 of 43 US 9,285,977 B1

c—
Hint Water
316
327
pomegranate
340 \,_{ $1 8 for 12 16-ounce bottles

@)

FIG. 8A

U.S. Patent Mar. 15, 2016 Sheet 26 of 43 US 9,285,977 B1

pomegranate
$1 8 for 12 16-ounce bottles

« pire water, with a dash of lvely pomagranate 403
» zero dist sweelners e

» zevo calones

* Zero preseivatives

* vegan, giuterHree, kosher

» off natural made from non-GRO plants 4 0 5
N ___,,_/
1 _—/——M
] case - 12, 160z bottles

(Proceed to Checkout }"“\\/

~—" " Continue Shopping

411

FIG. 8B

U.S. Patent Mar. 15, 2016

411

Sheet 27 of 43 US 9,285,977 B1
o N
7D
_/41 3
pomegranate
$18 for 12 16-ounce bottles
» pure water, with a dash of vely pormegranats 403
L —H—
.
. I made fam non- o s 405
Bt
Y| case - 12, 160z botties
407
(AddtoCatt 71—

" Continue Shopping

f

FIG. 8C

U.S. Patent

411

Mar. 15, 2016 Sheet 28 of 43 US 9,285,977 B1
O
D
-/41 3
Qty. Total
pomegranate .| L1 | $18.00
T Continue Shopping Subtotat $1 8.00
Tax $1 62
shipping | FREE
l Total $19.62
Promo Code

\
)

418

322

FIG. 8D

U.S. Patent Mar. 15, 2016 Sheet 29 of 43 US 9,285,977 B1

Y

Billing Information
O Visa O Master Card ODiscover
O American Express

Card Number

Exp. mm/yyy CcCcv

Name as it appears on card

Address

Address

State Zip code]

323

Phone Number ()

NEXT || 417

@)

FIG. 8E

U.S. Patent

g

)

FIG. 8F

Mar. 15, 2016 Sheet 30 of 43 US 9,285,977 B1
e
O
Shipping Information
O Same as biling
Name
Address
Address
State Zip code
Phone Number () -
Email address
<
T 324
Save information for future use
NEXT J—___417
@

U.S. Patent Mar. 15, 2016 Sheet 31 of 43 US 9,285,977 B1

S

D
Summary
Qty. Total
omegranate [&]
;'SB for 129&-011:1(:9 bottles $1 800
recaiculate
Continue Shopoing sub-total | $18.00
Tax $ 1 62
shipping | FREE
Total $19.62

Promo Code

419

i

T T ——325

FIG. 8G

U.S. Patent Mar. 15, 2016 Sheet 32 of 43 US 9,285,977 B1

=)

Thank you for your order!!!!

Your tracking number is #4567800886.
An email has been sent to the email
address you have provided. Please
contact us if you have any questions.
Enjoy your orderil!

Continue Shopping
326

@)

FIG. 8H

US 9,285,977 Bl

Sheet 33 of 43

Mar. 15, 2016

U.S. Patent

v6 ‘9id

39
sJ01duosaq
SIS

29
SUOISUS)Xg
Joiaeyag

2101

910)S (s)uoisuaix] Joiduosaq 91819

Joineysg

[5¢]
sjossy

ov
s101duosaq

210]g Joyduosaq

810)
abeyoed deipp

2101S S)osSy JOMBIA

BIM

(Md1omieN A1aAljoq 1usu0))
JuswuoiAug deapp

US 9,285,977 B1

Sheet 34 of 43

Mar. 15, 2016

U.S. Patent

yA%
S{00]
uswabeuepy

Ge
S|00
Buuoyiny

g6 Old

21015 / JoAIDS /\\@3
Joyduosaq deipn

0§
1BMBIA
awnuny

SUOISUBIXT
Joineysg

00%
wiys

91013 / JonIeg
JOMaIA auwpuny

0s1

e
ddy deipp 7 Josmoug

U.S. Patent Mar. 15, 2016 Sheet 35 of 43 US 9,285,977 B1

190
Receive Request for Wrap Package r—~_-

l

Fetch Corresponding Wrap 192
Document

l

194

Determine Runtime Environment | >~/

ls Viewer Needed

19< ? 1?

Deliver Wrap Deliver Wrap

Document without Document with
Viewer Viewer

FIG. 10

U.S. Patent Mar. 15, 2016 Sheet 36 of 43 US 9,285,977 B1

202

Device Requests Wrap Sand

'

Wrap Server Returns HTML Shim aad

206

Is Runtime Viewer

Already Available at Requesting /
Device?
Request
YES Runtime Viewer
212\ 4 i
Launch Runtime Viewer < Deliver Runtime
213 l Viewer

1210

Request Wrap Descriptor From Wrap
Package Storage Server S

!

Wrap Package Storage Server Returns Wrap
Package Descriptor

»] 218

Does Delivered
Wrap Package Have An
sociated State Descriptor?

/220 YES
Request/Deliver
State Descriptor

222
YES 226

y

Does Wrap
Package Have Associated

Extension(s)?

Request/Receive
NO v Extension(s)

Runtime Viewer Generates Wrap
HTML for Requesting Device (FIG. 12) [™~_ 228

!

Request/Receive Assets -~ 230

.

Wr_ap Pack.age Rendered_ on 234
Requesting Device by Populating Shim

FIG. 11

U.S. Patent Mar. 15, 2016 Sheet 37 of 43 US 9,285,977 B1

START
228 266 _ | Handler Acts on

Event
Build Object Graph | 251
Based on Descriptor Y.
(Model) 268 Update Display
~— Status of Model

(Model State)

v

Build DOM Based on 253

Object Graph ind _ Y
(View) View State
269 _| Updates as
l Needed Based
i e e T 085 on New Model
Browser Renders Wrap |~ State

Based on DOM ‘

________ 1‘ Controller i
258 Associate Handlers/NAV

with Wrap Based on
Current Card/Model State

A

) 260

N
Event Received? <
‘__—-///

262

Event Dispatcher Determines If
NO~~There is An Active Matching Handler

YES
A /\/264 NO
Delegate Event to i >~ YES
Matching Handler Valid Event?

265

FIG. 12

US 9,285,977 B1

Sheet 38 of 43

Mar. 15, 2016

U.S. Patent

€L Ol

L0717]

10) 4"

<TWly/>
<Apoq/>
20y L ———<3dTJOS/><, ¥6/€90LSETTYTéSL " UTRW/ ,=dds 1dTJDS>

movr\Jll\\A>HU\VA=LwCHmucou-gmL3 MITA-BU,=SSeTd> AIp>
<.Apoq,=p1 Apoqg>
<peay/>
</ ./.=49JYy 9seq>
</ .8ud-juadedsuedl-uodTAE4
| -deum/sadewt/, =494y ,8ud/a8ewt,=2dA1 ,U0DT,=T3J JUIT>
— <
/ .399YsoTA15,=ToJ ,¥6LE£90/SETCHTESSI UTRW/ ,=42Jy MUTT>
</ .SSD
/3%93,=9dA1 ,3199ysoTA3s,=ToJ .00/ ‘009 ‘00F ‘00t : sues+uado=ATTWeE}iSSD
Jwo>d*s1deaT8008° s1u04/ /. =49dY UIT>

N——

movr\lll\\Awﬂpﬂp\vgmLzAwHquv

</ JIN-TBWTUTW ‘OU=3TQRTEDS-JdSN ‘T=3TEIS-WNWTXew ‘T=3TedS-TeTITUT
“YIPTM-9DTASP=Y3IPTM,=3UdIUOD ,3JOdMITA,=dWeu ejau>
</ .8-43nh,=313sdeyd eiaw>
<peay>
<TW3y>
<TwWiy 3I4ALD0Q| >

00¥ r\

U.S. Patent

Mar. 15, 2016 Sheet 39 of 43

R e e e R

SONETRBRCRNRL HE S Ty e Fragnii, Ry

Pigosgtariany s Have St Sor Eaah andd Spvee &

i ke o

\§

FIG. 14A

US 9,285,977 B1

U.S. Patent Mar. 15, 2016 Sheet 40 of 43 US 9,285,977 B1

_—116(1)

161

Cyanthus Latristris ————

—~H— 16H

@)

FIG. 14B

U.S. Patent Mar. 15, 2016 Sheet 41 of 43 US 9,285,977 B1

L 116(2)

| 161(2)

Magnificent

Eugenes Fulgens

—

/

—16H(2)

©)

FIG. 14C

f

U.S. Patent Mar. 15, 2016 Sheet 42 of 43 US 9,285,977 B1

_— 116(3)

- 161(3)

Stellers Jay

Cyanocitta Stelleri

/

L 16H(3)

. /

FIG. 14D

U.S. Patent Mar. 15, 2016 Sheet 43 of 43 US 9,285,977 B1

POOLSIDE BUNGALOW

FIG. 14E

US 9,285,977 B1

1
CARD BASED PACKAGE FOR
DISTRIBUTING ELECTRONIC MEDIA AND
SERVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation of U.S. patent applica-
tion Ser. No. 14/669,395, filed Mar. 26, 2015. This applica-
tion also claims the benefit of U.S. Provisional Patent Appli-
cation Nos. 62/062,056 and 62/062,061, both filed Oct. 9,
2014 and entitled “WRAPPED PACKAGES OF CARDS
FOR CONVEYING A NARRATIVE WITH MEDIA CON-
TENT, PROVIDING APPLICATION FUNCTIONALITY
AND ENGAGING USERS IN E-COMMERCE”. This appli-
cation further claims priority of U.S. Provisional Patent
Application Nos. 62/084,171, filed Nov. 25, 2014; 62/091,
866, filed Dec. 15, 2014; 62/114,675, filed Feb. 11,2015, and
62/133,574 filed Mar. 16, 2015, each entitled “CARD
BASED PACKAGE FOR DISTRIBUTING ELECTRONIC
MEDIA AND SERVICES”. Each of these priority applica-
tions is incorporated herein by reference.

BACKGROUND

This invention relates to distributing media content over
communication networks, and more particularly, to a system
and method for delivering wrapped packages of cards, each
card selectively including (i) media content, (ii) application
functionality and/or (iii) e-commerce related services. The
cards of the wrap packages are ideally authored in one or
more linear sequences so that a book-like narrative unfolds,
not only through the cards themselves, but also by the transi-
tion between the cards, as they are sequentially browsed. In
addition, the wrap packages are portable objects that may
exist within a social feed or within a custom application.
Wrap packages are also readily distributed, similar to elec-
tronic messages, through e-mail, messaging, social-media, or
via a variety of other electronic communication platforms. As
aresult, wrap packages are consumable, shamble and savable
objects. As the cards are browsed in the one or more linear
sequences during consumption, the user experiences the
unfolding of the authored narrative, including the defined
media content interwoven with the complementary applica-
tion functionality and/or e-commerce related services. As a
result, the entire user experience including any application
functionality and/or e-commerce related services is substan-
tially contained within the context of the wrap package itself,
typically (but not necessarily) without the need to navigate to
other sites.

Media content developers have a variety of authoring tools,
document formats and content delivery schemes that can be
used to create and present media content to users over net-
works, such as the Internet. The content may be presented to
users through a variety of mechanisms, including via web-
sites, through the use of a mobile application (i.e., a mobile
app) and downloadable documents such as PDF files, Pow-
erPoint presentations, etc. Each of these delivery mecha-
nisms, however, has limitations, particularly within a mobile
computing environment.

PDF files, while relatively simple to author, have a number
oflimitations. The content of PDF files is static. Once created
and delivered to a user over a network, there is no way for the
viewer to interact, through the PDF file, with the distributor.
For example, retailers commonly create PDF versions of
product catalogs, which are distributed via a web page or
email. When the PDF file is opened, however, the document is

10

15

20

25

30

35

40

45

50

55

60

2

limited to only viewing. The viewer is unable to interact
through the PDF file with the retailer, for instance, to ask
questions about a particular item or to make a purchase. Also
since PDFs are not dynamic documents, they need to be
delivered to a consuming device as a single binary block. As
a result PDFs, especially if they are graphic intensive, are
typically large files, which may be difficult to distribute,
especially over wireless networks to mobile devices. Further-
more, most PDF files are created for viewing on desktop
computers, which have relatively large display screens. As a
result, the viewing of these PDF files on a mobile device, such
as a mobile phone with a relatively small viewing screen,
often provides a poor user experience.

Websites typically include one or more web pages that are
accessed and viewable through a browser. Web pages are
typically written in HTMLS, CSS and JavaScript and include
information such as text, colors, backgrounds, and often links
to images and other types of media, to be included in the final
view of the web page when displayed through the browser.
Layout, typographic and color-scheme information is typi-
cally defined by a style sheet language (CSS), which can
either be embedded in the HTML or can be provided by a
separate file, which is referenced from within the HTML.
When the URL of a web page is accessed, the hosting web
server will access and serve the appropriate files during a
session with the requesting device. The browser, running on
the requesting device, will then present to the user the media
content in the format dictated by the HTML, as authored by
the web page designer. In addition, web pages often include
embedded hyperlinks. When selected, typically with a point-
ing device such as a mouse, stylus or a finger, the hyperlink
will navigate to a new web page or media.

There are a number of advantages and disadvantages of
using web sites for presenting media content to users. Web
sites are typically “destinations”, meaning a potential viewer
is usually required to navigate to the web site to consume its
content and functionality. Web sites are thus generally not
considered as portable objects that can be readily delivered to
consumers and other viewers, similar to messages. In addi-
tion, web sites are typically optimized for desktop computing,
providing a rich opportunity for user interaction. With mobile
devices, however, particularly mobile phones or wearable
computing devices such as smart watches, small display
screens and limited input/output capabilities, often results in
a poor user experience. When viewing a web site through a
screen on a mobile phone for example, itis often very difficult
to read text and view images. It is also very difficult to input
data and navigate from one web page to another. As a result,
the user experience of accessing and viewing web sites on
mobile computing devices is often frustrating, resulting in a
poor user experience. In addition, the authoring of highly
interactive, content-driven, web sites designed to create a
positive user experience often requires a high degree of soft-
ware expertise and sophistication. As a result, the creation of
web sites designed for Internet commerce, for instance, is
often very expensive and beyond the financial means of many
small businesses and organizations.

More recently with the proliferation of “smart” mobile
phones and tablets, mobile applications (often referred to as
“apps”) have become exceedingly popular. Mobile apps are
typically “stand alone” or monolithic software programs,
designed to perform a specific task or function, and intended
to run on smart phones, tablet computers and other mobile
devices. An extremely wide variety of apps are now common-
place, such as productively tools like email, calendars, etc.,
gaming, GPS services such as Google Maps, text and/or voice
messaging, live communication such as Skype, online bank-

US 9,285,977 B1

3

ing, etc., to name just a few. With their growing popularity, to
a significant degree, apps have replaced web sites as the
preferred method for content providers to create and distrib-
ute media content to mobile computing device users.

Apps also have many advantages and disadvantages. On
the positive side, apps often provide a content rich, rewarding,
user experience. A well-designed app allows users to
sequence through a number of views, presenting content to
users in an orderly fashion. On the negative side, apps are
typically “stand alone” software applications that do not eas-
ily interact with other software applications. As result, the
functionality of apps is often limited, typically only capable
of performing the specific task(s) that they were designed to
perform, and working only with the specific endpoints con-
templated at the time they were developed. As a result, it is
often difficult, although not impossible, to create the neces-
sary integration functionality for a user to purchase a product
and/or service through the app. Also, the design and authoring
of apps is typically very complex and requires a very high
level of design engineering expertise to create apps that are
professional-looking and appealing. In addition, apps typi-
cally are not cross-platform. App developers usually have to
create and distribute multiple versions of the same app for the
i0S/Apple, Android/Google and the Microsoft platforms for
example. As a result, the development and maintenance costs
associated with creating and distributing an app is complex
and very expensive. Finally, apps typically have to be distrib-
uted through an application aggregator, such as the Apple App
Store or Google Play. Apps, therefore, typically cannot be
directly downloaded from the author/creator to users or con-
sumers.

Recent advances in i0S 8 and Android, with multiple APIs,
are making it easier for multiple apps to communicate with
one another. It is now possible, for example, to integrate iTune
purchases as in-app purchase or to purchase a physical prod-
uct using an app like Shopify outside of the Apple environ-
ment and not bound by Apple purchase policies. In addition,
tools are now available, such as Sencha and PhoneGap, to
create a web-based multi-platform native app using HTML/
CSS/JS (JavaScript) and embed them into a web view con-
tainer inside of a native app package.

However, even with these recent advances, it is still very
difficult for content providers to create a package of media
content and functionality that conveys a compelling narrative,
is portable and designed to provide a similar user experience
on multiple devices, including mostly mobile devices, and is
self-contained, meaning the recipient typically does not need
to navigate to other sites to reap all the desired benefits and/or
advantages contemplated by the distributor of the media.

SUMMARY

A variety of data structures, components, runtime viewers
and methods are described for defining, delivering and ren-
dering wrapped packages of cards in a manner that is particu-
larly well suited, but not limited to, display on mobile devices.
Each card may selectively include media content, and a pal-
ette of application functionality and/or supporting e-com-
merce related services. The cards of the wrap packages are
ideally threaded together into one or more linear sequences,
and authored to convey a book-like narrative that unfolds as
the cards are sequentially browsed. In addition, the wrap
packages are portable objects that are readily distributed,
similar to other electronic messages, through e-mail, messag-
ing, social-media, or via a variety of other electronic commu-
nication platforms. As a result, wrap packages are consum-
able, sharable and savable objects. As the cards are browsed in

10

15

20

25

30

35

40

45

50

55

60

65

4

the one or more linear sequences during consumption, the
user experiences the unfolding of the authored narrative,
including the palette of complementary services and func-
tionality interwoven with the defined media content.

In a non-exclusive embodiment, the data structure of a
wrap package is defined in terms of a wrap descriptor, which
defines the structure, layout and content of a set of cards of the
wrap suitable for display on a display device (e.g. a computer
display) separate from their presentation. In some embodi-
ments, the wrap descriptor may also include a plurality of
card descriptors, each card descriptor arranged to define the
content, structure, layout and/or presentation of an associated
card respectively. The wrap descriptor may have an associ-
ated unique identifier that can used to access the wrap and
may take the form of'a data object, such as a JSON (JavaScript
Object Notation) data object. A unique card identifier is also
preferably associated with each of the cards which helps
facilitate reuse of the same card in different wraps.

In various other non-exclusive embodiments, each card
preferably has one or more components and the associated
card descriptor has a layout that defines the presentation of the
associated card and the associated components. The compo-
nents defined in the card descriptor typically have associated
content intended for display when the associated card is ren-
dered and may optionally include one or more subcompo-
nents. The layout may include a unique layout identifier and/
or a layout definition. The descriptor may be used to associate
various behaviors, styles and/or other attributes with specific
cards/components/sub-components, etc. Within the descrip-
tor structure, specific component and/or card behaviors may
be declared rather than embedded in the card itself. Triggers
may also optionally be included within a card to trigger an
action in response to an event that occurs while the associated
card is displayed. Virtually any type of computer detectable
event can be used as a trigger, as for example: a user input that
selects a selected component while the associated card is
displayed; a system generated event; a change of state within
the wrap when the wrap is displayed; etc.

In another aspect, a runtime viewer is used to render a
runtime instance of a wrap. In some embodiments, a wrap
descriptor is returned to the runtime viewer in response to a
request for a particular wrap. In such embodiments, the runt-
ime viewer is arranged to render a wrap instance based on the
wrap descriptor and preferably includes, or has the ability to
obtain, the definitions of any behaviors declared in the wrap
descriptor.

The use of the above-described descriptor(s) and architec-
ture(s) to define and render wraps makes the wraps highly
portable and can help free the author of a wrap from the need
to understand the idiosyncrasies of the various computing
platforms that the wrap may be rendered on. At the same time,
the ability to easily impart interesting behaviors, styles and
other attributes to cards and card components in a modular
way can simplify the creation of media rich content in a
visually compelling manner while facilitating the integration
of'a wide variety of different behaviors, services and/or func-
tionalities with the card content in a format that is very well
suited for presentation on mobile devices and a wide variety
of other computing platforms and content consumption
devices.

Wrap packages thus allow businesses and other organiza-
tions to simply and cheaply create, distribute, and manage
storytelling mobile web user experiences, app like function-
ality, all delivered directly to consumers in the form of a wrap
package. Where businesses used to have to build destinations
(websites) or use monolithic systems (apps), they can now
provide consumers, particularly mobile device users, with a

US 9,285,977 B1

5

user experience that delivers the content they want combined
with a complementary palette of functions and/or e-com-
merce related services. Wrap packages thus solves a number
of current problem with the mobile web. Unlike web sites,
wrap packages are easy to consume on mobile devices and
offer the opportunity to create compelling narratives and user
experiences. In addition, the ability to incorporate app-like
functionality into wraps provides a multi-function app-like
experience, without having to be in an app, download an app,
or open several apps.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention and the advantages thereof, may best be
understood by reference to the following description taken in
conjunction with the accompanying drawings in which:

FIG. 1 is a diagram illustrating a wrap package layout that
includes a plurality of cards threaded together so as to be
viewable in linear arrays in accordance with the principles of
the present invention.

FIG. 2 is a diagram depicting the design, functionality and
data integration capabilities of a representative card in a digi-
tal companion wrap package according to the principles of
the present invention.

FIG. 3 is a diagram illustrating the media content and
distribution model for distributing digital companion wrap
packages in accordance with the principles of the present
invention.

FIG. 4 is a block diagram of a representative system for
authoring, storing, distributing and consuming wrap pack-
ages in accordance with the principles of the present inven-
tion.

FIG. 5A diagrammatically illustrates selected components
associated with defining and rendering a representative wrap
package.

FIG. 5B diagrammatically illustrates selected components
associated with defining and rendering a representative wrap
package in accordance with another embodiment that utilizes
state descriptors and/or behavior extensions.

FIG. 6 is a diagram illustrating the hierarchy of a wrap
descriptor in accordance with the principles of the present
invention.

FIG. 6A is a diagram illustrating the hierarchy of a particu-
lar card descriptor in accordance with the principles of the
present invention.

FIG. 6B is a diagram illustrating the hierarchy of a second
card descriptor embodiment.

FIG. 6C is a diagram illustrating the hierarchy of a gallery
card wrap descriptor embodiment.

FIG. 6D is a diagram illustrating the hierarchy of a trigger
component descriptor embodiment.

FIGS. 7A-7M are a series of cards of an exemplary wrap
package in accordance with the principles of the present
invention.

FIGS. 8A-8H are a series of cards for implementing an
exemplary purchase of products through a wrap package in
accordance with the principles of the present invention.

FIG. 9A is a diagrammatic representation of a wrap distri-
bution environment highlighting item stores useful in deliv-
ering wrap packages.

FIG. 9B is a diagrammatic representation of an alternative
server/store architecture suitable for delivering wraps.

FIG. 10 is a flow chart illustrating a method of delivering a
wrap package to a consuming device.

FIG. 11 is a flow chart illustrating a shim based method of
delivering a wrap package to a consuming device.

10

25

40

45

50

55

65

6

FIG. 12 is a flow chart illustrating a method of generating
a view based on a wrap descriptor and updating the view
based on user inputs in accordance with an embodiment of the
present invention.

FIG. 13 illustrates the contents of a representative shim
suitable for use in the method of FIG. 11.

FIGS. 14A-14E illustrate a series of cards of another exem-
plary wrap package.

In the drawings, like reference numerals are sometimes
used to designate like structural elements. It should also be
appreciated that the depictions in the figures are diagram-
matic and not to scale.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The invention will now be described in detail with refer-
ence to various embodiments thereof as illustrated in the
accompanying drawings. In the following description, spe-
cific details are set forth in order to provide a thorough under-
standing of the invention. It will be apparent, however, to one
skilled in the art, that the invention may be practiced without
using some of the implementation details set forth herein. It
should also be understood that well known operations have
not been described in detail in order to not unnecessarily
obscure the invention.

The present invention is directed to the mechanisms that
support the distribution of media content, and a correspond-
ing palette of application functionality and/or e-commerce
related services, in the form of wrapped packages of cards
(interchangeably referred to herein as a “wrap”, “package” or
“wrap package”).

In a non-exclusive embodiment, wrap packages are a
mobile-first marketing and commerce platform that ideally
provides a beautiful world of storytelling in bite-size
moments that get and hold attention. In other embodiments,
wrap packages can be used and distributed to other platforms,
such a desktop computers or Smart TVs for example. Wrap
packages, although highly suitable for mobile, are not limited
only to mobile devices.

Wrap packages takes content combined with mobile app
and website functionality and makes them into an elegant
card-based narrative that is delivered in the browser as a
sharable and savable message. Wrap packages thus provides
an app-like user experience that is delivered as a live, inter-
active message from a cloud-based platform, using for
example, the Software as a Service (SaaS) model.

The uniqueness of wrap packages creates opportunities for
business and other organizations alike to innovate and
improve marketing efforts, customer support, and user expe-
riences in ways previously not possible, because an enabling
interface and platform did not exist. Wrap packages can thus
potentially define the next generation interactive web para-
digm, particularly for mobile, although for desktop and other
types of devices as well.

By authoring wrap packages, businesses and other organi-
zations can simply and cheaply create, distribute, and manage
storytelling mobile web user experiences, app like function-
ality, all in the context of wrap packages delivered directly to
consumers. Where businesses used to have to build destina-
tions (websites) or use monolithic systems (apps), they can
now provide consumers, particularly mobile device users,
with a user experience that delivers the content they want
combined with a complementary palette of functions and/or
e-commerce related services.

Wrap packages are also platform and device independent.
Wraps do not have to be written for any specific platform,

US 9,285,977 B1

7

such as i0S or Android, or for any specific device or class of
devices (e.g. smart phones, tablets, desktops, etc.). On the
contrary, a wrap package need be authored once and it will run
on almost any device, regardless of the operating system or
the type. This ubiquity, along with the ability to easily dis-
tribute wrap packages similar to messages, is a powerful
construct that potentially can make the use of wrap packages
near universal.

Wrap packages thus solves a number of current problem
with the mobile web. Unlike web sites, wrap packages are
easy to consume on mobile devices and offer the opportunity
to create compelling narratives and user experiences. In addi-
tion, the ability to incorporate app-like functionality into
wraps provides a multi-function app-like experience, without
having to be in an app, download an app, or open several apps.

A wrap is a portable container of multimedia content, such
as text, images, photos, audio, video and the like, and inter-
active services designed for ease of delivery, exchange, and
consumption. It is comprised of a collection of cards, which,
from an end-user/consumer perspective, are atomic units of
the aforementioned multimedia content and interactive ser-
vices.

The cards in a wrap have an explicit sequence so that, when
taken as a whole, they are ideal for, but not necessarily limited
to, creating a narrative story as the cards are browsed in the
defined sequence. The multimedia content and/or interactive
services contained by any given card can be determined
entirely in advance or as late as the moment the wrap is
consumed by the end-user.

Cards have a visual representation intended to evoke simi-
larities to their physical counterparts. They have a fixed por-
trait aspect ratio that makes them ideally suited to current
mobile computing devices as well as easy to scale up to and
arrange to fit other display form factors, such as provided on
laptop and desktop computers as well as smart TVs. The
physical card metaphor can also extend to the interactive
behavior of cards in a wrap, as the user can use gestures that
evoke the “flipping” of cards in a deck or bound booklet to
navigate between them.

Cards, however, however can differ from their physical
counter-parts in ways that provide for unique presentations of
content or the aforementioned interactive services. For
example, a gallery card provides the ability to present an
expanded amount of content in a vertically stacked orienta-
tion such that the overall length (i.e., the number of cards in a
horizontal sequence) ofthe wrap is not affected by the amount
of content in the wrap. This aids in navigation since the user
can flip to the previous or next card regardless of their current
position in the gallery.

The app-like functionality and interactive features imple-
mented within cards include, but are not limited to, for
example the ability to open hyperlinks to additional content
on the web, such as maps or a shopping cart, which can be
presented in a modal overlay called a cul-de-sac. The cul-de-
sac allows for interaction with a traditional flow of web con-
tent without losing a viewer’s position within the wrap. When
the interaction is complete, the cul-de-sac is dismissed,
returning the viewer to the original card in which the cul-de-
sac was initiated. Other services may use input from the user
or a remote source to dynamically generate the content on a
card. These are just a few illustrative examples of the app-like
functionality and interactivity that can be built into the cards
of wrap packages.

The wrap package data structure definition, or schema,
contains a unique identifier and descriptive metadata for the
wrap and contains a card package for each card in the wrap.
Similar to the wrap package, the card package is an abstract,

20

25

30

35

40

45

50

8

platform-independent data structure representing the con-
tents of a card, which is a composition of components repre-
senting internal atomic units of content such as text or an
image or other nested containers of components. Compo-
nents may also represent content that is dynamically gener-
ated at the time of consumption, for example, by fetching
content from the Internet or by processing input from the user.

Cards are thus like containers for holding and distributing
media content, such as text, images, photos, audio, video and
the like. In addition, cards may also contain or hold execut-
able objects that provide or enable real-time features, such as
application functionality (i.e., the ability to schedule appoint-
ments, engage in online chats or conversations) and support
e-commerce related services (i.e., the ability to purchase
goods and/or services). Such media content and executable
objects are sometimes referred to herein as card “assets.”
Cards are also consumable anywhere, meaning they have the
ability to be resolved and displayed on just about any type of
device (mobile phones, laptops, tablets, wearable computing
devices such as smart watches, desktop computers, smart
TVs, etc.), regardless of the platform (e.g., i0S, Android,
Microsoft, etc.). In addition, cards are a navigation metaphor.
Each card can be authored to group related information that
can be easily consumed within a user interface experience by
swipe (or other simple gesture) navigation from card-to-card.
Wrap packages thus represent a holistic, book like, narrative
approach to presenting information and providing application
and/or e-commerce related services to users and consumers,
particularly those using mobile devices, such as smart phones
and tablet computers.

In addition, each card in a wrap has defined content that is
displayed in a predefined layout. In general, the cards in a
wrap have the same size and aspect ratio. The aspect ratio is
preferably device independent and is preferably maintained
regardless of device orientation and/or display window size.

Referring to FIG. 1, a diagram of a non-exclusive embodi-
ment of a wrap package 10 viewable on a computing device
12 is illustrated. The wrap package 10 includes a plurality of
cards 14 that are threaded together so as to enable browsing
by swiping in one or more linear sequences. Any of the cards
14 may optionally include various types of media, such as
text, images or photos, audio, video, a live or streaming feed
of' media, 3-D objects, or content from other wrap packages
(not illustrated). Any of the cards 14 may also optionally
provide application functionality, such as the ability to
receive input data or display dynamically generated data, a
calendar for scheduling or booking appointments or making
reservations for goods and/or services, location/GPS, etc. In
addition, any of the cards 14 may optionally provide or sup-
port e-commerce services, such as the ability to browse prod-
ucts in a catalog, communicate with an online sales represen-
tative, and/or purchase product(s).

By way of example, in the schematically illustrated wrap
package 10, card 14, includes text, card 14, presents a gal-
lery, card 14 includes images or pictures, card 14, includes
a video, card 14, includes e-commerce related service(s),
card 14 includes a calendar function for scheduling appoint-
ments and/or booking reservations, card 14, includes a user
approval function, 14, _, includes a data entry function, card
14, includes location or GPS services, etc.

On computing devices with touch sensitive screens, the
cards 14 of wrap packages 10 can be navigated linearly by
swiping or by using other suitable interfaces, such as a stylus
orpen. In devices without a touch sensitive screen, alternative
user interfaces are provided to facilitate transition (e.g., flip-
ping) from one card to the next. In the context of the present
application, the terms “swipe-browsing” or “swiping” is

US 9,285,977 B1

9

intended to mean the navigation from one card to an adjacent
next card. With devices with touch sensitive screens, swipe
browsing is typically implemented by the sliding ofa finger or
other input device across the display. With devices without
touch-sensitive screens, other navigation tools such as a
mouse, keyboard or remote control, can be used for swipe
browsing. When a swipe is performed, the content of the next
card in the sequence is displayed. For example, by swiping
either right to left or vice versa, the next card, depending on
the swipe direction, in the horizontal sequence is displayed.
Similarly, by swiping up and/or down, the next card in either
the up or down sequence is displayed. Thus, the user experi-
ence when consuming a wrap package is the wrap package
itself (as opposed to a remote web site for example), viewable
via a swipe-able interface.

Additionally, some cards may also include one or more
embedded link(s) that, when selected, enable navigation to
either a non-adjacent card not in linear sequence or to another
wrap package, a web page or some other location entirely
outside of the wrap package.

It should be noted that the particular layout of cards 14 in
the wrap package 10 illustrated in FIG. 1 is merely illustra-
tive. Both the number of rows and/or columns, and the num-
ber of sequential cards 14 within any given row or column,
may vary widely as appropriate to deliver the desired user
experience, narrative, content, functionality and services of
the wrap package 10.

With gallery cards, such as card 14, of FIG. 1, swiping
allows for the scrolling through of the contents of a card 14,
which are typically too voluminous to be displayed within the
size of a fixed screen display, such as that provided on a
mobile phone. In an illustrative example, a particular wrap
package 10 may include a plurality of cards organized in a
horizontal sequence. By swiping right to left or vice versa, the
next card 14 or the previous card 14 in the horizontal sequence
is displayed. In the vertical direction, however, one or more
selected cards 14; may be configured in the gallery format,
allowing the viewer to scroll up or down by swiping through
media content of the gallery. In an illustrative but non-exclu-
sive example, a wrap package 10 authored and distributed by
a car rental business may include a horizontal sequence of
cards 10, each dedicated to a category of information perti-
nent to a traveler (i.e., cards dedicated to local hotels, restau-
rants, local tourist attractions respectively). By swiping up or
down for a given card, relevant material within each category
is displayed in a gallery format. For instance by swiping up or
down the hotel card (not illustrated), a gallery of a number of
local hotels is displayed. In variations of the gallery card
format, the behavior invoked by an up or down swipe may
differ. For example, swiping up or down my result in a con-
tinuous “rolling” of the content of the gallery card. In other
embodiments, an up or down swipe may result in a “snap”
action with the next item of content appearing after the snap,
for example, as illustrated as cards 14Y and 147 in FIG. 1.

The wrap package 10 is identified, as described in more
detail below, through the use of a unique identifier (wrap ID
42) assigned to the package 10. By way of example, the wrap
1D 42 may take the form of a Uniform Resource Identifier
(URL). As such, the wrap ID may thus be provided as a link,
which can readily be used to effectively send or retrieve the
wrap package. That is, the wrap package may effectively be
“sent” to a potential viewer as a link using any of the wide
variety of mechanism that can currently—or in the future—be
used to send a link or convey the URL. By way of example,
this may include e-mail messages, text messages, SMS mes-
sages, via a Twitter tweet, as a post on social media such as
Facebook, etc., discussion forums, walls or the like, as a link

10

15

20

25

30

35

40

45

50

55

60

65

10

embedded in a document, an image, or a web page or any
other media type, in a blog or microblog (e.g. Tumblr), or any
other messaging or electronic content distribution mecha-
nism or communication platform currently known or devel-
oped in the future.

Wrap packages are therefore significantly different and
more powerful than web sites. For example with wrap pack-
ages, they can be consumed “on the spot” where it is located
(i.e., when delivered to a mobile device for example). In
contrast with the selection of a banner ad appearing within a
web site, where the viewer is taken to a new web page that is
not (a) necessarily designed for mobile devices and (b) is self
navigating, making it very difficult for a narrative to be con-
veyed. As a result, the user experience, particularly on mobile
devices, may be very poor. Hence, the friction of providing a
compelling user experience with wrap packages is far less
than with web site.

The cards 14 of a wrap 10 can be displayed on the screen of
virtually any type of computing device. It should be appreci-
ated that the card metaphor is particularly well suited for use
on mobile devices such as smart phones, tablet computers,
etc., which makes the format particularly powerful for
authors interested in developing content tailored for mobile
devices. By delivering wrap packages 10 to mobile devices,
users and potential customers can be won over at their point of
intimacy, where they spend their time and consciousness.
Wrap packages thus allow authors, merchants and other con-
tent providers to create compelling narratives and provide
ongoing application functionality and/or e-commerce sup-
port directly delivered anytime and anywhere to users, trans-
forming their mobile devices into a powerful business tool
that enhances mobile engagement and relationships. As a
result, higher customer satisfaction, better brand engage-
ment, and a higher conversion (i.e., click-through rates) and
repeat e-commerce related activity compared to other forms
of after sale promotions and merchandising will likely result.

Referring to FIG. 2, a diagram depicting the design, func-
tionality and data integration capabilities of a representative
card 14 in a wrap package 10 is shown.

By using card templates, authoring tools and media col-
laboration tools, beautiful, content-rich, cards 14 may be
created either by automation or by individuals with even
minimal design skills and experience. As such, the author,
either a person or an automated process, has the ability to
easily create beautiful content-rich cards 14 that can selec-
tively include text, images, photos, and other media similar to
PDF files, but optionally, with the added benefit of additional
application functionality and/or e-commerce related services,
either embedded in the same card 14, or other cards 14, in the
wrap package 10. In the automated authoring embodiments,
the content of a card 14 can be populated by a data processing
system that automatically uploads predefined content into
various defined fields of a card template.

By authoring (i) the horizontal and/or vertical sequence
order for swipe-browsing the cards 14, (ii) the media content
in each card 14, (iii) application functionality and/or (iv) the
e-commerce services for each card 14, it is possible to author
wrap packages 10 that are content-rich, highly interactive,
and that define a palette of services, functions and experi-
ences related to the wrap package 10, all within the context of
a story book-like narrative that unfolds as the cards 14 are
browsed in their sequence order(s).

In addition, the use of component libraries and the author-
ing tools allow for the authoring of cards 14 with a diverse,
easy 1o use, reusable, set of component modules that provide
a wide variety of application functions and e-commerce ser-
vices. Such application functions include, but are not limited

US 9,285,977 B1

11

to, for example, calendar functions, scheduling of an appoint-
ment functions, reserving or booking goods and/or services,
such as a car rental, hotel room, or table at a restaurant, map
or GPS related functions, support for online conversations,
streaming live video or other media feeds, etc. In addition,
e-commerce related services include displaying product and/
or service offerings, displaying user account information,
engaging a sales representative in an online chat session, and
enabling the purchase of goods and/or services, etc. These
card services or “plugins” are all part of an ecosystem sup-
ported by a Wrap run-time engine viewer (described in more
detail below), which allows the various plug-in services to all
communicate and inter-operate together. For example, a cal-
endar plugin could be configured to communicate with a
reservation booking database plugin, which could communi-
cate with a chat plugin. The communication among the vari-
ous plug-in services is accomplished through a common set
of APIs. As a result, the interactivity, functionality and use-
fulness of wrap packages 10 are significantly enhanced by
such an ecosystem of connected plug-in services.

Finally, the integration capabilities of cards 14 enable the
bi-directional flow of data from users browsing a wrap pack-
age 10 to other cards 14 in the same wrap package 10, to
another wrap package 10, or a remote data processing system.
For example, a card 14 can be integrated with the back end
software system for a large online retailer, which will auto-
matically populate the content of a card 14 with product
images, user account information, prior purchase informa-
tion, and a host of other user-related information. Alterna-
tively, a card 14 can be used to capture data input from a user
and provide it to a retailer’s back end e-commerce software
system. For example, a card 14 may display a one-click “Buy
Now” function for a displayed item. When the Buy Now
function is selected, previously saved user account informa-
tion is automatically delivered to the back end software sys-
tem of the online merchant, which then processes the infor-
mation to complete the transaction.

The data entered by the user and/or the data presented via
acard 14 of a wrap package 10 may thus be integrated with the
back-end database, cloud computing services, web sites, etc.,
regardless if managed by an author and/or distributor of the
wrap package or by a third party. The data processing for the
purchase of goods and/or services, appointments, and/or
other application functionality and e-commerce related ser-
vices may, therefore, be performed either within the wrap
packages 10 itself or integrated with a remote data processing
resource.

The data integration capabilities of cards 14 can also be
shared among other cards 14 in the same wrap package 10,
with other wrap packages, with web sites, or just about any
other data processing system.

Referring to FIG. 3, a diagram summarizing the content
and distribution model for wrap packages 10 is shown. As
illustrated in the left most column, the content that may be
included in the various cards 14 of a wrap package 10 may
include photos and/or images, audio, video, text, 3-D objects,
various types of streaming media (e.g., audio, video, audio-
visual, data, biometric information, tickers, sensor outputs,
etc.), other data types, application functionality and/or
e-commerce services. This content may further be combined
with content mixed from other wrap packages 10 as well as
live or streaming content. The cards 14 of the wrap package
10 may be further modified based on analytics, intelligent
personalization based on the demographics of targeted users
or viewers, as well as the integration of either data input or

10

15

20

25

30

35

40

45

50

55

60

65

12

data output to/from with other cards 14, other wrap packages
10, or remote data processing systems and processes, as
explained above.

All of the above are then combined during the authoring
process into a group of digital objects, defined herein as the
wrap package 10. In non-exclusive embodiments where
URLSs are used as identifiers (i.e., wrap 1D 42), the wrap
packages are “light-weight”, meaning content of the wrap
package 10 is delivered over a network to auser only when the
wrap 1D 42 for the wrap package 10 and/or each card 14 is
identified. As a result, the media content, application func-
tionality, and/or e-commerce related services is delivered
only when needed. Also, by authoring the cards 14 using a
widely supported language such as HTML, the cards 14 of
wrap packages 10 can be written once and are viewable on a
display associated with almost any computing device running
a browser. Accordingly, unlike applications, multiple version
of a wrap package 10 need not be authored for multiple
platforms.

The wrap package 10 is thus essentially a cloud based
portable object that may be readily distributed in a number of
ways. In non-exclusive examples, wrap packages 10 may be
distributed by email, SMS messaging, ad networks, Twitter,
merchant/retailer web sites, photo and/or video sharing web
sites that support messaging, social networking web site such
as Facebook, through the down-loading of applications from
aggregators such as the Apple App Store or Google Play, or
just about any means for electronically distributing data over
a network, currently known or developed in the future.

Authoring and Distribution of Wrap Packages

Referring to FIG. 4, a block diagram of a non-exclusive
system for authoring, storing, distributing and consuming
wrap packages 10 is illustrated. The system 20 includes a
server node 22, a plurality of computing devices 12, including
but not limited to a desktop computer 12 A, a laptop computer
12B, a tablet computer 12C, a mobile “smart” phone 12D, a
wearable computing device, such as a smart watch 12E or
smart glasses 12F and “smart” TVs 12G. The server node 22
and the computing devices 12A-12G communicate with one
another over a network 24. In various embodiments, the net-
work 24 may be the Internet, an intranet, a wired or wireless
network, a Wi-Fi network, a cellular network, other types of
communication network, or any combination thereof.

The server node 22 includes a “wrap” engine 26, which
defines a web application framework 28, a storage device 30
and cache 32, each for storing wrap packages 10 and other
data. The server node 22 also may include a suite of tools,
such as an authoring tool, an analytic engine tool, a media
collaboration tool and a data transformation tool, for author-
ing wrap packages 10.

The web application framework 28 is a software platform
designed to support the manual and/or automated authoring
of wrap packages 10. The framework 28 is designed to alle-
viate the overhead associated with common activities per-
formed during the authoring of many wrap packages 10. For
example, the framework 28 may include one or more libraries
to help with the authoring of common tasks, and modularizes
and promotes the reuse of code designed to perform specific
tasks, such as implementing application functionality and/or
supporting e-commerce. In various embodiments, the web
application framework 28 may be implemented using, but is
not limited to, Ruby, Rails, JavaScript, Angular-JS, and/or
any other language or framework currently known or devel-
oped and used in the future.

US 9,285,977 B1

13

In a non-exclusive embodiment, the web application
framework 28 of the wrap engine 26 also performs content
management as a way of organizing, categorizing, and struc-
turing the media and other content resources such as text,
images, documents, audio files, video files and modularized
software code so that the content of wrap packages 10 can be
stored, published, reused and edited with ease and flexibility.
The content management function is also used to collect,
manage, and publish content, storing it either as components
or whole documents, while maintaining dynamic links
between the components and/or cards 14 of a wrap package
10.

In yet another non-exclusive embodiment, the web appli-
cation framework 28 of the wrap engine 26 is structured
around multiple tiers, including but not limited to a client tier,
an application tier and a database tier. The client tier refers to
the browser enabled communication devices 12 that execute
and display cards 14 of wrap packages 10, as well as web
pages written in HTML or another mark-up language. The
database tier, which is maintained in storage 30, contains the
one or more libraries of user and/or platform provided media
content, software components, modules, etc. used for the
authoring of wrap packages 10. The application tier contains
the software that runs on the server node 22 and that retrieves
and serves the appropriate wrap package 10 from storage 30
and/or cache 32 when requested by a computing device 12.

Since wrap packages 10 are essentially data objects, they
can be both cached and delivered over a Content Delivery
Network Interconnection (CDN), both of which can be effec-
tively used to deliver wrap packages 10 with minimal delay.
For example, commonly requested wrap packages 10 may be
cached in the cache 32, which provides faster access and
delivery times than storage 30. Also other caching techniques,
such as pre-caching, may be used with popular wrap packages
10, to speed up delivery times. Since the amount of storage in
the cache is typically limited, cached wrap packages 10 and
other data may be periodically replaced by any known
replacement algorithm, such as first-in, first-out or least
recently used for example.

During the composing of a wrap package 10, one or more
author(s) 34 may access the server node 22 over a network 36,
which may be different or the same as network 24. The
author(s) 36 interact with the wrap engine 26, including the
web application framework 28, and the above-mentioned
suite of tools for the creation, editing, optimization and stor-
ing of wrap packages 10. In yet other embodiments, the one or
more author(s) 34 can also access third party content 38 for
inclusion into a wrap package 10. As previously noted, wrap
packages 10 can be authored manually by one or more indi-
viduals or electronically in an automated process.

For more details on the authoring of cards 14 of wrap
packages, see U.S. provisional applications 62/062,056 and
62/062,061, both entitled “Wrapped Packages of Cards for
Conveying a Narrative With Media Content, Providing Appli-
cation Functionality, and Engaging Users in E-commerce”,
both filed Oct. 9, 2014, and both incorporated by reference
herein for all purposes.

Once the authoring of a wrap package 10 is complete, it is
maintained in storage 30 and possibly cached in cache 32. In
response to receiving an identifier, the wrap engine 26 fetches
the corresponding wrap package 10 from storage 30 or the
cache 32 and serves it to the requesting computing device 12
for consumption in a format customized for the viewing
device.

It should be noted that the authoring and distribution dia-
gram of FIG. 4 is merely representative and should not be
construed as limiting. For example, multiple server nodes 22

10

15

20

25

30

35

40

45

50

55

60

65

14

for the authoring and/or distribution of wrap packages 10 may
be provided at the same or different locations. In addition,
multiple instantiations of a given wrap package can 10 be
stored at multiple server nodes 22, typically located at differ-
ent geographic locations. With this arrangement, the server
node 22 that is most capable of quickly delivering a requested
wrap package 10, sometimes referred to as the “publication
server”, is the node 22 that will deliver the wrap package to
the requesting device 12.

The Wrap Package

As diagrammatically illustrated in FIG. 5A, a wrap pack-
age 10 includes a set of one or more cards 14. Each card 14
may contain one or more components 16 that serve as con-
tainers for content objects 17. The content objects 17,
together with the behaviors associated with the cards and
components 16, define the content and functionality of the
cards. The content objects 17 may be simple or complex.
Simple content objects 17 include standard web-based con-
tent types such as text, images, video clips, etc. More complex
content objects 17 may include objects having more compli-
cated structures and/or behaviors, as will be described in
more detail below.

The structure of the wrap 10, including the structure, layout
and components 16 of each of its cards 14 is preferably
defined by a wrap descriptor 40. The actual structure of the
descriptor 40 may vary widely and a few different suitable
descriptor structures are described in more detail below with
respect to FIGS. 6-6D. Some content objects 17, such as text,
may be directly included (in-line) in the component 16. Other
content objects 17, such as images or video clips, may be
included by reference, e.g., through simple URL references,
or in-line through an encoding method such as MIME (Multi-
Purpose Internet Mail Extensions). Complex content objects
17 may be specified in-line or by reference and may (a)
contain other components 16 or content objects 17 and/or (b)
specify abstract behaviors.

Referenced content objects 17 stored outside of the wrap
descriptor 40 are sometimes referred to herein as assets 65.
The referenced assets 65 may take the form of almost any type
of content that can be included in the wrap package. This can
include text, photos, images, 3-D objects, audio, video, and
other media content or streams and/or a variety of executable
objects, services and/or other functionality. Sometimes an
asset may take the form of a stream and the wrap descriptor 40
is arranged to identify the source of the stream (i.e., the feed).
By way of example, the stream could be a live audio or video
stream, a data feed such as a stock ticker, sensor outputs,
biometric information, etc.

In certain circumstances, some or all of the assets 65 asso-
ciated with a wrap 10 may be stored and accessible from a
dedicated wrap server. However, that is not a requirement.
Rather, an asset can be retrieved from any location that would
be accessible by the consuming device (e.g., through the
Internet, an intranet or private network or any other reliable
means), and there is no need for the various assets 65 to be
located in a single asset store, although that may be desirable
in many circumstances.

The wrap package 10 has an associated identifier, the wrap
1D 42, that uniquely identifies the wrap 10. The wrap 1D is
preferably a globally unique identifier (GUID). In some
embodiments, the wrap ID 42 takes the form of a URL, or any
other identifier that can be converted to, or extracted from, a
URL, which facilitates access to the wrap 10 over the Internet
using conventional mechanisms. An example of a conversion

US 9,285,977 B1

15

of'the wrap ID to a URL might be adding a domain as a prefix
to the wrap ID to form a URL (e.g., www.wrap.com/wrap/
<wraplD>).

FIG. 5A also diagrammatically illustrates selected compo-
nents associated with defining and rendering a representative
wrap package 10. The illustrated components may optionally
include one or more covers 15, a wrap descriptor 40, a wrap
runtime viewer 50 and various referenced external assets 65.
As previously noted, the wrap descriptor 40 defines the struc-
ture, layout and components 16 of each of the cards 14 within
the wrap package 10. The wrap descriptor 40 typically
includes the wrap 1D 42 and a set, deck or array of card
definitions or card descriptors 46, each defining the structure
of an associated card (as described with respect to FIG. 6 for
example). The wrap descriptor 40 may also include other
information of interest such as a wrap name/title 44 and
optionally one or more cover identifier(s) 43 and/or other
information or metadata 45 about the wrap package 10.

To facilitate rendering the wrap package 10 on various
different devices, the wrap is preferably stored in a data
format that separates the data from the presentation. At the
time of this writing, JavaScript Object Notation (JSON) is a
popular, light-weight, data-interchange format that can be
used to describe the wrap package 10. Thus, by way of
example, the definition of the wrap package 10 may be stored
as a JSON data object at the server(s) 22. That is, the descrip-
tor 40 may take the form of a JSON object. In other embodi-
ments, a BSON (Binary JSON) data object may be used.
Although the use of JSON or BSON data objects is described,
it should be appreciated that in other embodiments, the wrap
package 10 may be stored in a variety of other suitable for-
mats, whether now existing or later developed.

The optional cover 15 of the wrap package 10 is typically
a graphic object that contains an embedded hyperlink to the
wrap (e.g., the URL used as wrap ID 42) and can be placed in
any suitable type of electronic media to represent the wrap
package 10. Thus, a wrap 10 may be accessed by clicking on
or otherwise selecting the cover 15 or by clicking on, or
otherwise selecting any other type of link containing the wrap
1D 42. As such, in order to “distribute” a wrap package 10,
either the cover 15 or a link can be distributed to potential
viewers of the wrap package 10 using any available tool. For
example, the wrap package 10 may be distributed by: (i)
placing the cover 15 or a link on a webpage, in an ad or in any
other location that can be accessed by a potential viewer via a
browser; (ii) by posting the cover 15 or a link on a blog, a
microblog, a forum, a wall etc. or any social media distribu-
tion mechanism such as Facebook, Twitter, etc.; (iii) by
including the cover 15 or a link in a message such as e-mail,
SMS message, a Twitter Tweet, text messages, etc.; or (iv)
using any other available distribution mechanism or platform,
either known now or developed in the future. Therefore, in
many circumstances, it is desirable to create a cover 15 that is
attractive and entices viewers to access the associated wrap
package 15. In some instances, the cover 15 may take the form
of an image from the wrap package 10 itself (e.g., the first
card), however, that is not a requirement.

The wrap package 10 is configured to be rendered on a
consuming device 12 in conjunction with a wrap runtime
viewer 50, which is also sometimes referred to as the wrap
run-time engine or simply the viewer. The runtime viewer 50
provides a set of tools and functionalities that are helpful for
viewing and/or interacting with the wrap. In some circum-
stances, the viewer 50 will take the form of a dedicated,
platform specific, wrap viewer application (e.g., an applet or
app in the context of a mobile device), a plug-in (e.g. a
browser plug-in) or other mechanism installed on the viewing

10

15

20

25

30

35

40

45

50

55

60

65

16

device that provides the necessary functionality. In other cir-
cumstances the wrap viewer functionality may be incorpo-
rated into other types of applications. However, limiting the
rendering of wraps to devices which have preinstalled wrap
viewing applications/functionality would greatly reduce their
portability since users are not always motivated to install such
applications unless or until they see a compelling need.
Therefore, as will be explained in more detail below, the
delivery of a wrap packages 10 may optionally be accompa-
nied by a run-time viewer 50 that includes a set of associated
tools and functionalities suitable for use by a conventional
browser to generate and/or render the runtime instance of the
wrap based on the wrap descriptor 40 and to facilitate user
interaction with the wrap package 10. These tools and func-
tionality can be thought of, and are often referred to herein as
a wrap toolset that is part of the wrap runtime viewer 50. By
providing the wrap construction, viewing and interaction
toolset in a browser executable form together with the wrap
descriptor 40, the wrap package 10 can be consumed on a
wide variety of different devices and operating system plat-
forms (e.g., 10S, Android, Microsoft, etc.) without requiring
the users to download and install a device and/or platform
specific viewer application. This is a powerful construct for
enhancing the portability and viral distribution of wrap pack-
ages among a myriad of devices and operating system plat-
forms

In the embodiment illustrated in FIG. 5A, the viewer
toolset provided with the wrap viewer 50 includes naviga-
tional tools 51, sharing tools 52, storing tool 53, various
e-commerce tools 54, presentation engine/tools 55, security
and access control tools 56, a rendering engine 57, and appli-
cation functionality tools 58. Of course, it should be appreci-
ated that not all of these tools are required in all implemen-
tations and that in other implementations, a variety of other
tools and functionalities may be provided as well. The navi-
gational tools 51 facilitate navigation within the wrap pack-
age 10. The sharing tools 52 provide mechanisms by which a
consumer of the wrap 10 may share the wrap with others, e.g.,
by e-mail, by SMS message, via a social media post, etc.
Storing tool 53 allows a user to persistently store the wrap
and/or when applicable, the wrap state, either locally or
remotely. The e-commerce tools 54 may include a variety of
functionalities that can help facilitate a variety of e-commerce
tasks including purchasing, making reservations, etc. Appli-
cation functionality tools 58 enable “app-like” functionality
within the wrap package 10, such as conducting online chats,
GPS functionality, etc. Presentation engine 55 controls the
presentation. In some embodiments, the presentation engine
55 may be arranged to present the wrap on the consuming
device ata scale and in an aspect ratio that is at least somewhat
optimized for the device.

Security and access control tools 56 provide security and
access control functionality, which might include encryption
functionality and user authentication services. For example,
in some circumstances, the publisher of a wrap may want to
limit the circulation of the wrap to specific users or groups of
users. A few, nonexclusive examples of such circumstances
include when the wrap is created for use as: (i) an active
receipt for a purchase as described in U.S. Provisional Appli-
cation Nos. 62/062,056 and 62/075,172 (both incorporated
by reference herein for all purposes) and (ii) a ticket for an
event as described in U.S. Provisional Application No.
62/079,500; (also incorporated by referenced herein for all
purposes) (iii) an item customized for a customer such as a
travel itinerary; (iv) an employee manual as described in U.S.
Provisional Application No. 62/114,731 (also incorporated
by reference herein for all purposes); etc. Encryption services

US 9,285,977 B1

17

may be desirable to protect confidential information. Of
course, there are a very wide variety of other circumstances
where security and/or access control/permission functional-
ity may be desired.

With certain embodiments, the viewer 50 may optionally
also include a rendering engine 57 arranged to create and/or
render a runtime instance of the wrap on a consuming device
12 based on the descriptor 40. In such embodiments, the
rendering engine is arrange to dynamically generate the
HTML (or other markup language) use by a browser or other
viewing mechanism on the device 12 to render the wrap at
runtime. In some implementations, the rendering engine 57 is
arranged to create an object graph based on the descriptor 40
and a document object model (DOM) based on the object
graph. The browser or other suitable app or application may
then use the DOM to render the wrap package 10.

With yet other embodiments, the viewer 50 may also
optionally have any number of card behaviors definitions 60.
As will be described in more detail below, different cards can
be designed to exhibit a wide variety of different behaviors. In
order to simplify the card, and card template creation pro-
cesses, various desired behaviors can be defined separately
from the cards themselves. The behaviors are known to or
accessible by the wrap viewer 50 (e.g., desired behaviors may
be defined through behavior definitions 60 or may be acces-
sible as behavior extensions 62 as seen in FIG. 5B). Thus, the
descriptor for any particular card or component may simply
declare the desired behavior and the viewer 50 will know how
to impart such behavior to the wrap/card/component and/or
how to obtain an extension that imparts such behavior.

In FIG. 5A, the behavior definitions and the various tools
are illustrated as separate items to facilitate their description.
However, in practice, some of the illustrated tools are simply
sets of associated behaviors, and therefore, the illustrated
distinction between the behaviors and such tools is/are largely
for emphasis.

As discussed above, the wrap package 10 may be rendered
on a wide variety of different devices 12A through 12G.
These devices may have a wide variety of different screen
sizes, capabilities, and viewing mechanisms. When a particu-
lar device 12 requests a wrap package 10, a determination is
effectively made as to whether a suitable wrap runtime viewer
is already present on the requesting device. If not, a browser
compatible runtime viewer 50 is provided in addition to the
wrap or wrap descriptor 40. The browser compatible run-time
viewer may be written in any format that is appropriate for
execution by a browser. By way of example, JavaScript (JS) is
a dynamic programming language that is currently popular
and supported by most general purpose browsers and many
other rendering mechanisms. Thus, JavaScript works well for
the browser compatible viewer since the same wrap viewer
can be used for a wide variety of different browsers. However,
it should be apparent that in other embodiments, the wrap
viewer 50 may be implemented using a wide variety of other
now existing or future developed frameworks and/or lan-
guages. For example, the DOM rendering may be replaced
with a React framework or another suitable framework cur-
rently known or developed in the future. When the wrap
viewer is incorporated into a native application, it will some-
times be desirable to write the viewer (or portions of the
viewer) in a format that executes more efficiently or is other-
wise preferred for execution on the underlying operating sys-
tem, etc.

A specific wrap is illustrated in FIGS. 7A-7M. The illus-
trated wrap 310 is an informational wrap about a particular
product line—Hint® water. The wrap includes a deck of nine
cards—i.e., cards 311-319. Card 311 is the first card. Cards

10

15

20

25

30

35

40

45

50

55

60

65

18

312-315 are informational cards that describe the Hint®
water flavored products as illustrated in FIGS. 7B-7E respec-
tively. Card 316 is a gallery card that shows a number of
different available flavored water non-carbonated products as
illustrated FIGS. 7F-7H respectively. Card 317 is a second
gallery card that shows a number of different available car-
bonated flavored water products (Hint Fizz) as illustrated in
FIGS. 71-7K respectively. Card 318 is an e-commerce card
that allows a user to order a monthly subscription of Hint
products as illustrated in FIG. 7L.. Card 319 is the last card and
includes various tools that allow a user to share the wrap
and/or comment on the wrap on various social media forums
as illustrated in FIG. 7M.

The wrap 10 may be constructed in a variety of different
formats. As previously described, a descriptor 40 defining the
wrap may be constructed using JavaScript Object Notation—
i.e., in the form of a JSON data object. By way of example, a
representative JSON descriptor that defines the wrap 310
shown in FIGS. 7A-7M is provided in Appendix I of U.S.
Provisional Application No. 62/133,574, filed Mar. 16, 2015,
which is incorporated herein by reference.

Defining Card Behavior

Different cards 14 within a wrap 10 can be designed to
exhibit a wide variety of different behaviors. To simplify the
card authoring process, the card descriptor 46 within a wrap
10 can be arranged to declare the behavior of the card 14
without internally defining that behavior. Rather, in such cir-
cumstances, the desired card 14 behaviors are defined within
the wrap viewer 50 as part of the behavior definitions 60 or
through behavior extensions 62. With this arrangement, a
card template designer can define the behavior for cards 14
authored using the template, or can define a set of available
behaviors from which a card author can choose. If a set of
behaviors are available to the card author, then the authors
selects the desired behavior from the available set. In either
case, the desired behavior is declared as part of the card. With
this arrangement, different cards 14 within a wrap 10 can
exhibit different behaviors and such behavior remains with
the card even if the card is used in a different wrap. If a new
card behavior is desired, the new behavior can be created and
added to the behavior definitions 60. In this manner, the newly
defined behavior becomes available to other template design-
ers and/or card authors.

To illustrate the concept of defining card behaviors, con-
sider the gallery cards 316, 317 illustrated in FIGS. 7F-7K.
Generally a gallery card is arranged to display a number of
items. The items are presented in a vertically extending
sequence that extends beyond the display screen of the
expected viewing device. Thus, to view the items in the gal-
lery, a user would vertically scroll through the array of items.
Typically (although not necessarily), the items in the gallery
all have substantially the same structure. By way of example,
in the embodiment illustrated in FIG. 7, card 316 is a gallery
card as illustrated in FIGS. 7F to 7TH—which are screen shots
of'a set of gallery item panes, with each gallery item describ-
ing a different flavor of Hint® water—specifically, pome-
granate 321, blackberry 322 and blood orange 323 respec-
tively. As can be seen, each item has a similar layout with an
image 324 on the left being an image of the fruit that flavors
the water, and image 325 on the right being an image of the
relevant water bottle and a trigger 340 which identifies the
product, indicates it cost, has a “Buy Now” graphic 327 and
provides a mechanism that can be used to purchase the dis-
played item as will be discussed in more detail below.

US 9,285,977 B1

19

It can be imagined that the designer of a gallery card may
wish the card to be scrolled in a variety of different ways. By
way of example, one approach may be to conceptually divide
the gallery card 316 into a number of frames or “pages”
316(a), 316(b), 316(c) that have the visual appearance of
being separate cards as seen in FIGS. 7F-7H. In such an
arrangement, it may be desirable to have the displayed image
snap to the next adjacent page when a scroll command (e.g.,
a vertical swipe gesture) is received. In another example, the
items in the gallery may be relatively smaller such that the
displayed item does not take up the entire card display area. In
such a circumstance it may be desirable to have the displayed
image snap to the next adjacent item when a scroll command
is received. In still other circumstances, the card designer may
prefer to provide free (continuous) scrolling. Of course, other
types of scrolling behavior could be provided a well. In a
non-exclusive embodiment, a key 338 may be included for
providing a visual indicator of the relative up/down position
that is being displayed relative to the overall number of views
of the gallery card.

The card descriptor 46 for the gallery card includes a
behavior declaration that identifies the desired behavior for
the card which can then be bound to the card at run-time by the
wrap viewer (e.g., browser based viewer, native viewer, etc.).
For example, this could take the form of a statement such as:

“Behaviors”: [“vertical-snap-to-card”]

Further examples are shown in Appendix I of U.S. Provi-
sional Application No. 62/133,574.

The developer of the wrap viewer 50 can define any num-
ber of card behaviors that are supported by the viewer, such as
but not limited to the different scrolling techniques in the
example above. Third parties can provide extensions that
define still other behaviors (e.g., a scrolling behavior in which
a two finger swipe reacts differently than a one finger swipe,
etc.). The developer of a card template can define which of the
available behaviors are available for use with the template
(e.g., asubset, or all of the defined scrolling behaviors). Wrap
and card authors using the template can then select which of
the behaviors available to the template they would like to
associate with the card, and the chosen behavior is declared as
part of the card descriptor 46.

Although the specific example of scrolling behavior in a
gallery card has been given, it should be appreciated that
virtually any desired type of card behavior can be defined and
declared in a similar manner. It should be appreciated that
differences in card behavior may take a wide variety of dif-
ferent forms. For example, different types of cards may have
different accompanying behaviors; the behavior of a particu-
lar type of card may be different based on its position within
the wrap 10; and/or the animations associated with transitions
may vary with respect to card position.

Returning to the wrap 310 of FIGS. 7A-7M, several difter-
ent card behavior(s) can be implemented. For instance, the
first card in a sequence (e.g., card 311) may be arranged to
facilitate a transition to the second card (e.g., card 312) by
swiping to the left—but a swipe to the right may have no
effect. The transition may be animated, as for example, by an
animation that resembles flipping the first card in a manner
that resembles turning the page of a physical book. The final
card in the deck (e.g., card 319) may be arranged to facilitate
a transition back to the second to the last card (e.g. card 318)
by swiping to the right, whereas a swipe to the left may cause
an animation that starts looking like a page turn but snaps
back to indicate that the end of the wrap has been reached.
Intermediate cards may be arranged to facilitate transitioning

25

30

35

40

45

50

55

20

to the next page in response to a left swipe and transitioning
to the right in response to the preceding page in response to a
right swipe.

As previously suggested, the gallery cards 316, 317 may
also be responsive to vertical swipes to facilitate scrolling
through the gallery, whereas various other cards which do not
have associated galleries may not be responsive to vertical
swipes. In some embodiments, a left swipe from any of the
gallery card items or “pages” (e.g., 316(a), 316(b), 316(c))
transitions to the same next card 317. However, in other
embodiments, the gallery card behavior can be set such that
the next page that the sequence transitions to varies based on
the currently displayed gallery item or page. Of course, a wide
variety of other card behaviors can be defined and imple-
mented using the same behavior definition approach.

The actual structure of the descriptor used to define a
gallery card may vary significantly. By way of a representa-
tive card descriptor structure suitable for implementing a
gallery card is described in more detail below and is illus-
trated in FIG. 6C.

Triggers

A card can have one or more triggers embedded therein.
Triggers are hooks associated with displayed items that can
cause an action or behavior in response to an event (e.g. auser
input). That is, a predetermined user action or other event
(such as the selection of the displayed item) triggers a defined
action. In general, a trigger is a component 16 of a card. The
trigger has associated behaviors and one or more associated
handlers. When a triggering event is detected, the associated
handler causes execution of the desired behavior.

Virtually any type of computer detectable event can be
used to activate a trigger. In many circumstances, the trigger-
ing event may be a user input such as the selection of a
displayed trigger component (e.g., by tapping or performing
another appropriate gesture relative to a displayed item con-
figured as a trigger component). However, in other circum-
stance, the activating event may be system generated. System
generated events can include sensor input based events, time
or timer based events, the receipt of a particular message, the
determination that a particular navigational sequence has
occurred within a wrap, geo-location or proximity based
events (e.g., the viewing device is located within a particular
store or geographic area, or near to other users viewing the
same wrap) or any of a wide variety of other computer detect-
able events.

Once activated, a trigger may exhibit any desired behavior
which can be associated with the trigger through appropriate
behavior declarations 95. Virtually any type of computer
implementable behavior can be associated with a trigger. By
way of example, a linking trigger may be used to link the user
to another card within the current wrap, to send the user to
another wrap, webpage or other destination. The linking trig-
ger may also be arranged to define a desired linking behavior
(e.g., open in same tab, open in new tab, etc.). Other triggers
may initiate a wide variety of other action.

The ability to generally define triggering events and the
resulting behaviors is an extremely versatile construct that
provides wraps with tremendous flexibility and power. Thus,
triggers can be used to enable a wide variety of actions,
including invoking of a number of different application-like
functionalities or e-commerce related services. For example,
a trigger may be used to initiate an action (e.g., order a
product, conduct an online chat, sharing the wrap with others,
book or reserve a table at a restaurant, a hotel room, a rental
car, etc.). Almost any type of wrap component/asset can be

US 9,285,977 B1

21

associated with a trigger, which gives authors tremendous
flexibility in guiding the user experience.

The wrap 310 illustrated in FIG. 7 has a number of triggers.
These include purchasing trigger 340 (FIGS. 7F-7K), sub-
scription trigger 360 (FIG. 7L) and social media triggers 381,
382,383 (FIG. 7M). The purchasing trigger 340 is arranged to
facilitate a user purchase of the displayed product. As an
illustrative example, the trigger 340 of FIG. 7F, is associated
with a generally rectangular region that bounds the text and
graphic located at the bottom of the card, including the text
“pomegranate $18 for 12 16-ounce bottles” and the adjacent
“Buy Now” button. The region that involves the trigger is
generally shown by a dashed box in FIG. 7F. Selection of the
trigger 340 links the user to a mechanism that facilitates the
purchase of the identified item. The other above-identified
triggers in the wrap 310 are characterized by and operate in a
manner similar to the Buy Now trigger 340 of FIG. 7F.

The implementation of a purchase mechanism within a
wrap package 10 may be widely varied. For example, in some
implementations, the user may be linked to the vendor’s
website, where the purchase may be made in a conventional
manner through the website. If this approach is taken, it is
often desirable to access the target website through a “Cul-
de-sac” so that the user is returned to the wrap when finished
with any transactions they wish to make (a Cul-de-sac has the
property of returning to the initiating wrap card/page when
the user closes the target website). In another approach, the
selection of the trigger causes the wrap to transition to a
purchasing card (or sequence of cards) within the same wrap
where the desired transaction can occur. One such approach is
described below with respect to FIGS. 8A-8C. Alternatively,
the transition could be to a separate purchasing wrap. Regard-
less of the mechanism, it is often desirable (although not
necessary) to use a cul-de-sac approach so that the user is
returned to the card from which the transaction was initiated
after the transaction is completed. In still other implementa-
tions, the transaction can be completed without leaving the
current card—particularly when the user is using a secure
viewer that knows the user’s identity and relevant purchase
related information. In such an embodiment, the transaction
can be completed using a “one-click” purchasing option,
where previously stored customer billing, shipping and other
account information is used to process the purchase.

In anon-exclusive embodiment, the specific behavior asso-
ciated with the link may be declared in the same manner
described above. For example, consider a situation where the
trigger activates a link to an external website. There are sev-
eral ways that such a link could be implemented. One
approach might be to link to the target web page in the
currently active browser tab, which has the effect of navigat-
ing away from the wrap. A second approach might be to open
a new browser tab and open the target webpage in that new
browser tab. A third approach might be to initiate a Cul-de-sac
in the current browser tab and open the target webpage in the
Cul-de-sac (a Cul-de-sac has the property of returning to the
initiating wrap card/page when the user closes the target
website). In such an arrangement, the card template developer
can make these three link behaviors available to the trigger
and the card author can select the desired behavior. The card
developer can also define a default link behavior selection in
the event that the card author does not affirmatively make a
selection. As can be seen in Appendix I of U.S. Provisional
Application No. 62/133,574, trigger 340 in card 316 has these
three possible linking behaviors in response to activation of a
trigger.

The ability to direct a user to a target website to complete a
transaction can be helpful in many scenarios. However, a

10

20

25

30

40

45

50

55

60

65

22

drawback is that it can be more difficult to track or guide user
behavior after the user has navigated away from the wrap.
Therefore, it is often preferable to design the wrap in a manner
that facilitates handling user side interactions involved with a
transaction from within the wrap itself.

The actual structure of the descriptor used to define a
trigger may vary significantly. By way of example, a repre-
sentative trigger component descriptor structure is described
in more detail below and is illustrated in FIG. 6D.

Wrap Descriptors

Referring next to FIGS. 6-6D, a variety of specific descrip-
tor structures suitable for use in defining various wraps, cards
and/or components will be described. Although specific
descriptor structures are illustrated, it should be appreciated
that the structure of the various descriptors can be widely
varied. In general, the descriptors are arranged to define the
structure, layout, content and behaviors of the wrap without
details of its presentation on a particular device. That is, the
descriptors capture the functional and behavioral intent of the
author, in a platform independent way, such that the runtime
may implement the described structures and behaviors in a
way optimal for the platform in question.

A wrap generally will include multiple cards and the cor-
responding wrap descriptor will typically have discrete
descriptors for each of the cards. The card descriptors each
include a unique card identifier and define the structure,
behavior, layout and content of the corresponding card.
Behaviors associated with any particular card can be applied
at the card level (i.e., associated with the card as a whole), at
a component level (i.e., associated to a particular component
alone—which may or may not include subcomponents) or at
any subcomponent level. Since the card descriptors are dis-
crete, self-contained, units with a unique identifier, it is very
easy to mix wraps (i.e., use cards created for one wrap in a
second wrap). When cards are mixed, their components and
associated behaviors remain the same—although it is pos-
sible to define behaviors that are context or state aware and
therefore exhibit different states/properties/responses/etc. in
different circumstances.

The components are encapsulated units that may have
defined content (although such content may be dynamic) and,
when desired, specific defined behaviors, styles and/or other
attributes. In some preferred embodiments, each component
has a unique identifier and may optionally also have an asso-
ciated type and/or name. The use of encapsulated components
with unique component identifiers makes the components
highly modular such that an authoring tool can readily use and
reuse the same components in different cards and/or wraps.
Behaviors can be associated with the component and any
component can be composed of one or more subcomponents
which themselves are fully defined components.

Regardless of the level to which they are applied (i.e., wrap
level, card level, component level, subcomponent level, etc.),
the behaviors are preferably declared in the descriptor rather
than being explicitly defined within the descriptor. In that
way, the behavior declaration acts as a hook which can be
used to associate virtually any programmable logic with a
card/component/etc. The behaviors are preferably defined (or
at least obtainable) by the runtime viewer.

FIG. 6, diagrammatically illustrates the structure of a first
representative wrap descriptor 40. In the illustrated embodi-
ment, the wrap descriptor 40 includes the wrap 1D 42, the
wrap title 44, and a card descriptor 46 for each of the cards 14.
Each card descriptor 46 describes of the structure, layout and
content of the associated card. The wrap descriptor 40 may

US 9,285,977 B1

23

also optionally include cover identifier(s) 43 and/or any other
desired information or metadata 45 relevant to the wrap. The
cover identifier(s) 43 identify any cover(s) 15 associated with
the wrap. Other information and metadata 45 may include any
other information that is deemed relevant to the wrap, as for
example, an indication of the creation date and/or version
number of the wrap, attributions to the author(s) or publisher
(s) of the wrap, etc.

The card descriptors 46 may be arranged in an array, deck,
or in any other suitable format. In the diagrammatically illus-
trated embodiment, each card descriptor 46 includes: a
unique card identifier (card ID 71); a card layout 75; and
optionally, an associated card type 73. The card layout 75
preferably includes at least one of a layout identifier (layout
ID 76) and a layout definition 78 and optionally, a layout
name 77. When the layout definition is not explicitly provided
in the card descriptor 46, it may be obtained by reference
through the layout ID 76. The layout definition 78 may be
provided in a variety of different format. By way of example,
Cascading Style Sheets (CSS) works well. As will be appre-
ciated by those familiar with the art, CSS is a style sheet
language used for describing the look and formatting of a
document. Of course, in alternative embodiments, other style
sheets and/or other now existing or future developed con-
structs may be used to define the layout of the cards.

The card ID 71 is preferably a unique identifier that
uniquely identifies the associated card 14. An advantage of
using unique identifiers as card IDs 71 is that the cards 14 are
not wed to a particular wrap package 10, but rather, can to be
used in or shared among a plurality of wrap packages. That is,
once a card is created it can be used in any number of different
wraps by simply placing that card’s descriptor 46 at the
appropriate locations in the card decks of the desired wrap
package. Thus, the unique card IDs 71 can be used to help
streamline the process of using one or more cards 14 from one
wrap package 10 in a second wrap (sometimes referred to as
the “mixing” of cards 14 and/or wrap packages 10), which
can help simplify the process of creating the second wrap
package. In some implementations, the card IDs 71 may also
take the form of URLs, although this is not a requirement. A
potential advantage of using URLs as the card IDs 71 is that
the URLSs can potentially be used to allow a card in the middle
of the wrap to be more directly accessed from outside of the
wrap.

The card layout 75 defines the layout of the components 16
of the associated card 14. Preferably the card layout 75
includes a card layout ID 76 which uniquely identifies the
associated layout. In some embodiments, the descriptor itself
defines the layout using a conventional web presentation defi-
nition mechanism such as Cascading Style Sheets (CSS). In
other embodiments, the layout definition may be accessed
from a server using the layout ID 76. As will be familiar to
those skilled in the art, CSS is a style sheet language used for
describing the look and formatting of a document writtenin a
markup language. CSS enables separation of document con-
tent from the document presentation, including elements such
as the layout, colors and fonts. Thus, CSS is very well adapted
for inclusion within the wrap descriptor 40 itself.

It should be noted that the layout ID 76 is also useful in the
context of the aforementioned authoring tool used to create
and author wrap packages 10. Specifically, in some embodi-
ments, the authoring tool is provided with a number of pre-
defined templates (card layouts) from which an author of a
new card can choose. Each template has one or more contain-
ers/components 16, which are arranged on the card in a pre-
determined manner for holding card content 17. The template
itself can have any particular layout, or can be used to create

10

15

20

25

30

35

40

45

50

55

60

65

24

aparticular layout. In either case, the particular layout can be
assigned a unique layout ID 76, and thereafter, be used and
reused in conjunction with different cards thereby simplify-
ing the card creation process.

The card type 73 (which is optional in the descriptor)
relates primarily to such an authoring tool. For convenience,
the templates may be categorized into different groups or
classes. By way of example, the classes/groups may relate to
their intended uses, the entity for which the templates are to be
used, to the creator of the templates or any other logical
grouping of templates. For example, card type 73, can be
assigned to one or more predefined card templates, depending
on their intended function. For instance, an authoring tool
may include one or more card templates, each centric for the
display of text, visual media such as photos or images, the
playing of video, live or streaming media, application func-
tionality (e.g., scheduling appointments, GPS, etc.), or sup-
porting e-commerce (e.g., displaying products and/or ser-
vices for purchases, chatting with online sales representative,
etc.) respectively. Thus for each template type and class/
grouping, card type ID 73 may be assigned.

With the template-based approach, the author(s) of a wrap
package 10 can easily select a desired template/card layout
that meets their need from a set of available templates and
create a new card by readily inserting the desired content,
functionality and/or services into the predefined containers.
Such a template based approach can greatly simplify the
authoring of cards 14 and wrap packages 10, since the author
(s) need not be an expert in HTML, scripting or other typical
web page language constructs required in order to create the
card(s) 14 as typically required with creating conventional
web pages. Rather, those details are embodied in the selected
template itself, which translates to a specific layout 75, which
in turn is identified by the layout ID 76. When a run-time
instance of the wrap package 10 is created, layout 75 is used
to format the associated card 14.

The associations between components 16 and their con-
tained content objects 17, whether explicit in the card descrip-
tors, or implicit and anonymous, are sometimes referred to
herein as “pins” 80. When explicit, pins 80 are identified in
the card descriptors 46 by a universally unique Pin ID 81, and
by a symbolic pin name 82. When implicit, pins are anony-
mous at runtime, but may at design time be instantiated in
order to provide operable constructs to the authoring tools, in
which case they will share the name and ID of the component
they bind and associate.

Whether implicit or explicit, these conditions are equiva-
lent, and one representation may be trivially transformed into
the other and vice versa, with no loss of meaning. The runt-
ime, authoring environment and other tools are free to trans-
form the object graph as they see fit, and whether the asso-
ciation is treated as intrinsic or extrinsic is irrelevant for the
purposes of the determination of the structure of the wrap and
its contents, this transformation being a matter of conve-
nience.

The symbolic name of a pin (pin name 82) or component is
both Human and Machine-Readable, for example, “Head-
line”, “Glyph”, “Body”, “Image”, “Video™, “Cul-de-sac”, or
any other heading that the template designer deems appropri-
ate. The symbolic name is used to identify its function; can be
used and bound to by constraints and layouts to further con-
strain their display, behavior and function; and is used by the
authoring tools to identify the role of the thus-associated
component and map fields from one layout to another when
changing the layout associated with a card. Multiple pins or
components can share the same symbolic name. When they

US 9,285,977 B1

25

do, it implies that they serve the same role in the system, and
that the same rules will apply to them.

Components 16 contain there associated content 17 and
may also contain or reference zero or more attributes or
constraint objects, specifying metadata to manage or modify
the display of, or behavior of, that component. Constraint
objects may specify abstract symbolic data used by the runt-
ime to determine how to display or manage the object con-
taining it, (the Constrained Object,) or the behavior of that
object. Examples of such abstract symbolic data are CSS
class names, behavior names, or other symbolic names acted
on by other objects in the system. Constraints may also con-
tain concrete specifications to modify the display or behavior
of the object, or its container or any contained objects. An
example of the former is containing CSS rules applied to the
content. An example of the latter is inclusion inline or by
reference of JavaScript code that acts on the constrained
object.

The various constraint objects may be thought of as
attributes that define the style, format, behaviors, source/feed,
and/or constraints associated the corresponding content 17.
In the illustrated embodiment, these attributes include style
attributes 86, source attributes 87 and other constraint objects
such as behaviors 60, 62. Of course, other attributes of a
component can be defined and declared as appropriate for the
associated content.

The style attributes associate various styles with the con-
tent 17 and may take the form of style sheets (e.g. CSS) or
other conventional style definition mechanisms. By way of
example, if the content 17 is a text string, the style attributes
86 may include features such as the font, size, case, color,
justification, etc. of the text. If the content is a glyph, the style
attributes may include the color of the glyph, the size, etc.

The source attributes 87 indicate the source of the associ-
ated content 17. In some circumstances, the source attribute
may simply be a reference or pointer (e.g. a URL) that iden-
tifies the location of a static content object (e.g., an image, a
photo, a video, etc.). However, it should be appreciated that
the content can also be dynamic. For example, the content
object associated with a component of a wrap could be the
current price of a particular stock. In such a case, the source
attribute identifies the feed from which the current price will
be retrieved when the card is rendered.

The ability to incorporate feeds into a wrap is a powerful
construct that facilitates a wide variety of different function-
alities including the dynamic updating of information pre-
sented in a wrap after the wrap has been rendered. In general,
a feed is a structured source having content that can be
dynamically updated after the wrap has been rendered. As
will be appreciated by those familiar with the art, there are a
wide variety of different types of feeds and different feed
structures. For example, a live streaming feed may present a
live stream that is progressively rendered as the stream is
received. Examples of live streams include live video
streams, audio streams, biometric streams, stock ticker
streams, etc. Other feeds are server side event driven as is
commonly used to facilitate live updates—as for example,
sports score updates, stock price updates, etc. Still other feeds
are polling feeds in which the wrap periodically polls a
source.

The source attribute 87 may take the form a feed descriptor
that defines the nature and structure of the feed as well as its
feed characteristics including source location, data format(s),
update semantics, etc. For example, some feeds (e.g. live
feeds and live update feeds) require that a socket be opened
and kept open as long as the feed is active. Polling feeds
require the identification of the desired polling frequency. In

10

15

20

25

30

35

40

45

50

55

60

65

26

other embodiments, the source attribute may include a refer-
ence to a feed object (note shown) that defines the feed.

Itshould be appreciated that there are a very wide variety of
different types of information/content that a wrap author may
desire have updated dynamically while a wrap is being dis-
played. These might include items that may be expected to
update frequently and others that may update very slowly. By
way of example, a few examples of items that may be desir-
able to update dynamically include sports scores, stock
prices, the number of tickets still available for purchase for an
event, number of units of a product that are available or
simply an indication of whether a product is in our out of
stock, breaking news headlines, etc. A number of services can
also benefit from the ability to dynamically update content
based on information that can change while a wrap is dis-
played such as, the user’s geographic location, social net-
working group information (e.g. friends or peers that are
nearby, online, etc.), featured information, etc. For example,
a card in a wrap for a sports stadium could show the nearest
concession stands, restrooms, etc. which can vary as the user
roams around the stadium. Another card could show the stats
of'a baseball player currently at bat. A social networking card
may inform a user when their friends or others sharing similar
interests are nearby. A retailer may wish to run special offers
that update periodically. Of course, these are just a few
examples, and the types of content that a wrap author may
wish to be able to update dynamically is only limited by the
creativity of the author. Other constraint objects may include
declarations of specific behaviors that are intended to be
associated with the component 16 and/or content 17. Such
behaviors may include behaviors 60, 62 known to or acces-
sible by the runtime viewer 50 as discussed above.

FIG. 6A diagrammatically illustrates an alternative pin
based card descriptor structure 46A. Appendix II of U.S.
Provisional Application No. 62/133,574 illustrates a repre-
sentative wrap descriptor 40 A that takes the form of'a JSON
object that utilizes the pin based card descriptor structure 46 A
illustrated in FIG. 6A. FIGS. 14A-14E illustrate the wrap
defined by the wrap descriptor of Appendix II of the refer-
enced provisional. To facilitate correlation between the
Appendix and FIG. 6A, various descriptor elements are
labeled with corresponding reference numbers in Appendix 11
of the referenced provisional.

In the embodiment of FIG. 6A, the card descriptor 46
includes a unique card ID, 71, a card name 72, card type 73
and a card layout 75. The layout 75 includes a layout ID 76,
optionally a layout name 77 and an explicit layout definition
78. In the illustrated embodiment, the layout definition takes
the form of style sheets (e.g., cascading style sheets (CSS)).
Although the illustrated embodiment includes both the layout
1D 76 and an explicit layout definition 78, it should be appre-
ciated that either could be eliminated from the descriptor if
desired. For example, if the explicit layout definition is not
part of the descriptor structure, it could be accessed through
the use of the layout ID. Alternatively, when the layout defi-
nition 78 is explicitly provided, the explicit use of the layout
1D 76 may be eliminated. However, it is generally preferable
to explicitly provide the layout ID.

The descriptor 46 A also includes an array of zero or more
pins 80, with each pin 80 corresponding to a first level com-
ponent 16. Each pin 80 includes a pin ID 81, a pin name 82
and an associated component 16. The component 16 includes
acomponent ID 88, a component type 89, and the component
content 17. As indicated above, the content may be provided
in-line or by reference. Any desired attributes and behaviors
may then be associated with the component through a set of
zero or more component attributes 86 which potentially

US 9,285,977 B1

27

include any desired component style class declarations 91,
component style sheets (CSS) 93 and component behavior
declarations 95. In the illustrated embodiment, the style class
declarations 91 refer and bind to CSS classes defined in the
layout definition 78 that are used to define the format of the
associated component 16. Numerous examples of this bind-
ing can be seen in the Appendix II of the referenced provi-
sional. By way of example, the first pin 80(1) in Appendix 11
has an associated component style class declaration 91(1) that
refers to and binds the font size style “font size-x1” 96 defined
in layout 78 to the associated text content 17(1).

Component style sheets 93 provide an alternative compo-
nent level mechanism for associating specific styles and for-
matting with a component 16. In general, it is expected that
the card layout definition 78 will define the styles and formats
associated with each component in a robust manner that is
satisfactory to the card author. In such implementations, there
is no need to include any component level style sheets 93, and
it is expected that in many (indeed most) such card imple-
mentations, no component style sheets would be provided.
Rather, the associated styles may be bound through the use of
class declarations 91. However, the component style sheets
93 provide a mechanism by which the style assigned to the
component by the layout definition 78 may be overwritten,
which gives card authors great flexibility in defining the sty-
listic presentation of their content without altering the card
layout definition. In other implantations, it may be desirable
to define some of the style attributes at the component level
rather than the card level. In such implementations more
aggressive use of component level style sheet 93 would be
expected. In still other embodiments, the availability of com-
ponent level style sheets can be eliminated altogether. In the
illustrated embodiment, style sheet are used to assign styles to
the components since they are currently a popular format for
associating different styles with HTML content. However, it
should be appreciated that other now existing or later devel-
oped constructs can readily be used to associate styles with
the content as appropriate.

Behaviors 60, 62 can be associated with a component on
the component level in the same manner as the style sheets.
This can be accomplished, for example, through the use of
behavior declarations 95 which declare specific behaviors 60,
62 with their associated component. It should be appreciated
that the ability to associate specific behaviors with specific
components in a general manner provides tremendous flex-
ibility in the card creation process that facilitates the creation
of cards having an incredibly wide range of functionality and
behaviors while maintaining a simple, compact, and highly
portable wrap structure. Even though there is an ability to
associate behaviors with specific components, it is expected
that the behavior set may be null for many components
because they would have no need to have any specific behav-
iors associated therewith.

The card descriptor 46A also associates any desired card
level attributes and/or behaviors with the card through a set of
zero or more attributes 86C that are associated with the card
at the card level. Like the component attributes 86, the card
attributes 86C potentially include any desired card level style
class declarations 91C, card level style sheets 93C and/or card
level behavior declarations 95C which work in substantially
the same way as the component attributes, except that they
operate at the card level. When desired, the wrap descriptor 40
can also have similar wrap level attributes 86 W. Similarly,
when the content of a component includes one or more sub-
component(s), the various subcomponent(s) may have their
own associated component attributes 86 regardless of the tier

25

30

40

45

55

28

of'the component/subcomponent. Still further, when desired,
attributes can be associated with groups of components.

FIG. 6B diagrammatically illustrates an alternative card
descriptor structure 46B that does not utilize pins 80. The
structure of card descriptor 46B is generally similar to the
structure of card descriptor 46 A described above with respect
to FIG. 6 A except for the use of pins. Therefore, the attributes
(e.g., styles and behaviors) are associated with their corre-
sponding components 16 rather than with pins 80. Like in the
embodiment of FIG. 6A, the card descriptor 46B includes a
card ID 71, a card name 72 and a layout 75. The layout 75
includes a layout ID 76, layout name 77 and layout definition
78. The descriptor then includes an array of zero to many
components 16.

Each component 16 includes a component ID 88, a com-
ponent name 84, a component type 89, the associated content
17 and the associated attributes 86. Like in the previously
described embodiment, the associated attributes may include
associated classes 91, component style sheets or definitions
93, behavior declarations 95 and/or their associated behaviors
60, 62. Thus it can be seen that card descriptors 46B are
functionally substantially equivalent to the card descriptors
46A described above.

Appendix III of U.S. Provisional Application No. 62/133,
574 illustrates a representative wrap descriptor 40B that takes
the form of a JSON object that utilizes the component based
card descriptor structure 468 illustrated in FIG. 6B. This
descriptor defines the same wrap illustrated in FIGS. 14A-
14E and is generally equivalent to the wrap descriptor of
Appendix II of the referenced provisional. To facilitate cor-
relation between Appendix 111 and FIG. 6B, various descrip-
tor elements are labeled with corresponding reference num-
bers in the Appendix. It is noted that the attributes container
86 is labeled “Styles” in the JSON code of Appendix III.

Although only a few particular card descriptor structures
have been described, it should be appreciated that equivalent
functionality can be obtained using a wide variety of different
descriptor arrangements.

Gallery Card Descriptors

FIG. 6C illustrates a representative gallery card descriptor
46G. The illustrated embodiment uses the component based
descriptor approach of FIG. 6B although it should be appre-
ciated that other card descriptor hierarchies (such as those
illustrated in FIGS. 6 and 6 A can be used as well. Gallery card
descriptor 46G includes card ID 71G, card name 72G (in this
case “Gallery Card”), and card layout 75G with layout ID
76G, layout name 77G and CSS layout definitions 78G,
which together define a layout suitable for a gallery card. The
initial component is gallery component 16G, which has a
component ID 88G, a component name 84G, a component
type 89G, gallery component content 17G, and any associ-
ated attributes 86G (including class declarations 91G, style
sheets 93G and behavior declarations 95G).

In the illustrated embodiment, both the component name
84G and the component type 89G are “Gallery.” The “con-
tent” of the gallery component 16G is a set of one or more
gallery item components 116. Each of the gallery item com-
ponents 116 typically, although not necessarily, has the same
component structure previously described and can be thought
of as subcomponents. This introduces a powerful feature of
the described architecture. That is, the “content” of any par-
ticular component may be one or more “subcomponents”.
Similarly, the content of any of these “subcomponents” may
also include one or more next tier components and so on, with
the components at each tier having the same generic structure.

US 9,285,977 B1

29

Thus, each gallery item component 116 includes: a compo-
nent ID 88, which may be thought of as a gallery item ID; a
component name 84, a component type 89, content and any
associate attributes 86 (potentially including class declara-
tions 91, style sheets 93 and behavior declarations 95).

In the illustrated embodiment, the component name 84 and
component type 89 for the gallery item 116 is “Gallery Item”.
The content of the gallery item 116 is a set of components
(subcomponents) that make up the gallery item (that is, gal-
lery items 116, which are subcomponents of the gallery com-
ponent 16G, themselves have subcomponents which might be
thought of as third tier components). Each of these gallery
item components has the same structure as any other compo-
nent. By way of example, the gallery item components may
include a headline component 16H, and an image component
161 (shown in Appendix III of U.S. Provisional Application
No. 62/133,574). Only the headline component 16H is shown
illustrated in FIG. 6C, but the content of a representative
headline component 16H and image component 161 may be
seen in gallery items 116(1)-116(3) shown in FIGS. 14B-14D
and the corresponding JSON descriptor is shown and labeled
in Appendix III.

With the described structure, specific behaviors or styles
can be associated with components at any level. Thus, for
example, a behavior can be associated at the card level, the
gallery item level, the component of a gallery item level or at
any other level at which components are used. An example of
a card level behavior might be the aforementioned gallery
card “snap to item” behavior 60C, which can be seen in the
aforementioned Appendices 1, II and III. An example of a
gallery item subcomponent level behavior might be a trigger
as described below.

Although a particular gallery card descriptor structure has
been described, it should be appreciated that equivalent func-
tionality can be obtained using a wide variety of different
descriptor arrangements.

Trigger Descriptors

Referring next to FIG. 6D a descriptor structure for a rep-
resentative trigger component will be described. Like other
components, the trigger component 16T includes an optional
trigger component ID 88T, a component type 89T, a compo-
nent name 847, content 17T and any associated attributes 86T
(including any class declarations 91T, style sheets 93T and
behavior declarations 95T). In the illustrated embodiment,
the component type 89T is labeled “trigger” and the compo-
nent name 84T is labeled “transact” indicating that the trigger
is a transaction trigger.

The content 17T of the trigger component 16T in this
illustrative example includes three subcomponents. The sub-
components include a text box 16T, an image 167TI that takes
the form ofa “buy button” and a link 161.. An example of such
atrigger 340 can be seenin FIG. 7F wherein the content of the
text box 321 is “pomegranate $18 for 12 16-ounce bottles”,
the content of the image is the buy button 327 and the link is
a link to an external e-commerce site where a purchase trans-
action may occur. The link 161 has an associated behavior
“open-in-new-tab”, which causes the browser to open the
target URL in a new tab when the trigger is activated by
tapping on a touch sensitive display anywhere within the
region defined by the trigger or by otherwise activating the
trigger. The described link trigger behavior is a good example
of'a component level behavior.

In the illustrated embodiment, the link component 161 is a
first level component of the trigger and therefore the link is
activated by tapping on (or otherwise selecting) any compo-

30

40

45

30

nent within the trigger—as for example either the text box
321 or the buy button 327. Ifthe card creator preferred to have
the link activated only by selection of the buy button 327, that
can readily be accomplished by making the link a component
of'the buy button 327 rather than a first level component of the
trigger—or, by moving the text box component definition out
of'the trigger—as for example to the same component level as
the trigger itself. Any tap or click in the bounding rectangle of
the trigger, as defined by the components contained by the
trigger, results in the trigger being activated.

It should be apparent that the trigger component may be
included as a first tier component in the card descriptor or as
a subcomponent at any level within the card descriptor hier-
archy. Although a particular trigger descriptor structure is
illustrated, it should be appreciated that equivalent function-
ality can be obtained using a variety of different descriptor
arrangements. It should further that FIG. 6D is illustrative for
providing an example for the purchase of an item for sale. It
should be understood, however, the cards can be authored
with triggers for a wide variety of actions besides purchasing
an item, such as the reservation or booking of goods and/or
services, online chats, GPS related services and functionality,
etc.

Maintaining State Information

In many circumstances it may be desirable to transitorily or
persistently maintain state information associated with a user
and/or state information associated with a wrap 10. Some
information, such as general information about the user, may
be shared state information that is relevant to a number of
different wraps. Other state information may be specific to a
particular wrap (e.g., a particular user selection or input
within a wrap, etc.). Still other relevant state information can
be more global state information that is relevant to all
instances of a particular wrap independent of the specific user.

State information can be stored in a number of ways and the
appropriate storage techniques will vary in part based on the
nature of the state information. By way of example, general
information about a user and other user specific shared state
data can be maintained in a cookie, or when the user has a
persistent viewer application, the user state information can
be persistently stored locally in association with the viewer
application. If desired, any or all of the shared state informa-
tion can also be stored on the server side. The shared state
information may be useful to support a wide variety of dif-
ferent services including: user login and/or authentication;
e-commerce applications where the identity, contact info,
mailing address, credit card information etc. of the user may
be necessary; integration with other applications (e.g. a cal-
endar application, a chat application, etc.); and many other
services. User specific shared state information can also be
used to affect the navigation within a wrap. For example, user
demographic information can be used to determine which
card to display next in a set of cards.

There are also a variety of circumstances where it will be
desirable to persistently maintain state information about the
state of a particular wrap. For example, if a card includes a
dialog box that receives a user selection or a textual input, it
may be desirable to persistently store such selections/inputs
in association with the wrap itself so that such information is
available the next time the wrap is opened by the same user (or
same device).

In a nonexclusive embodiment, a state descriptor 68 is
created and used to maintain state information associated
with a particular wrap as illustrated in FIG. 5B. The state
descriptor 68 is associated with both a specific wrap and a

US 9,285,977 B1

31

specific user and thus can be used to store state information
relevant to that specific user’s interaction with the wrap.
When persistent state descriptors are used, the state descriptor
68 may be stored with the wrap on the publication server 22.
When the user has a persistent viewer application, the state
information can additionally or alternatively be stored locally
in association with the viewer application either in the state
descriptor form or in other suitable forms. Generally, a state
descriptor 68 will include a wrap ID 42 and a user ID that
identify the wrap and user that the descriptor is associated
with respectively. The state descriptor 68 also stores the rel-
evant state information in association with the card and com-
ponent IDs for which the state information applies.

In certain embodiments, it may also be desirable to syn-
chronize different instantiations of state information, depend-
ing on the where the state information is stored. For example
if a user updates their credit card or shipping address infor-
mation at a publication server 22, then the corresponding state
information residing within any particular wraps associated
with the user, or within a persistently stored wrap viewer
residing on a communication device belonging to the user,
would preferably automatically be updated. Conversely, any
state information locally updated within a wrap and/or a
persistently stored viewer would also selectively be updated
in any other instantiations of the state information, such as but
not limited to, other wraps, publication servers 22, on a net-
work, or any other remote data processing location for
example.

Transaction Handling

Referring next to FIG. 8A-8H, a card based approach for
in-wrap transaction handling will be described. The illus-
trated example is a shopping purchase transaction. Although
particular card layouts and functionalities are shown and
described, it should be appreciated that these features are
merely illustrative of a very specific example and that virtu-
ally any desired card based functionality and presentation
could be provided in their place.

FIG. 8A reproduces the first page of gallery card 316 as
shown in FIG. 7F. In this embodiment, trigger 340 is arranged
to link the user to another card 321 within the wrap (e.g., wrap
310) rather than to an external web page. Therefore, when the
user presses the “Buy Now™ button 327 on card 316 (or any
other portion associated with trigger 340), the wrap transi-
tions to an associated shopping card 321 as illustrated in FI1G.
8B, which facilitates the beginning of the purchase process.

In the embodiment illustrated in FIG. 8B, the shopping
card 321 contains product information 403, a quantity selec-
tor 405, and Add to Cart button 407, a Proceed to Checkout
409 button, a navigational link 411 for continued shopping
and a cart icon 413. The product information 403 provides
some information about the selected product and may take
any suitable form. In the illustrated embodiment, an image
and textual description is provided. The quantity selector 405
allows the user to select the number of units of the displayed
product that the user would like to purchase. User selection of
the Add to Cart 407 button adds the selected item (including
the quantity purchased) to a list of purchased items which is
graphically indicated to the user by incrementing the number
shown in the cart icon 413. This change in cart icon state can
be seen by comparing FIG. 8B, which shows the cart icon
prior to adding an item to the card and FIG. 8C, which shows
the cart after adding an item. The changes in the card’s state
would typically be stored locally in association with the wrap
until the purchase process is completed, although in other
embodiments, such changes can be immediately communi-

10

15

20

25

30

35

40

45

50

55

60

65

32

cated to a vendor’s shopping platform using appropriate
APIs. Navigational link 411 is a trigger that includes the text
“Continue Shopping”. When selected, the navigational link
411 returns the user to the card 316 from which they began or
some other card within the wrap.

Selection of “Proceed to Checkout” button 409 causes the
wrap to transition to Order Summary Card 322 as shown in
FIG. 8D. Alternatively, a left swipe gesture from Shopping
Card 321 will also cause the wrap to transition to Order
Summary Card 322. In the illustrated embodiment, the Order
Summary Card 322 summarizes the items in the shopping
cart and provides mechanisms by which the user can enter
additional information relevant to the purchase (e.g. a Promo
Code), cancel the transaction, or return to shopping by select-
ing button 411.

Swiping to the left on the Order Summary Card 322, or
selection of the “Continue to Checkout” button 418, causes
the wrap to transition to the Billing Information Card 323 as
shown in FIG. 8E. The Billing Information card 323 provides
text entry boxes for inputting the buyer’s billing information.
In various embodiments, the information can be entered
manually or automatically using a auto-fill function as is well
known in the art.

Once the user billing information is entered, the user may
transition to the next card—Shipping Information Card 324
seen in FIG. 8F by either swiping left or selecting the “next”
icon 417.

Similarly, once the required shipping information is
entered into the text entry boxes on the Shipping Information
Card 324, then the user may transition to the Purchase Sum-
mary Card 325 seen in FIG. 8G. Selecting the “Complete
Order” button 419 on Purchase Summary Card 325 commits
the purchase, causing the order to be transmitted to the vendor
shopping platform where it is processed and a receipt is
returned to the user and displayed in Receipt Confirmation
Card 326 as seen in FIG. 8H.

Each of the user buttons 327, 407, 409, 417, 418, 419 as
well as links 411 may be implemented as triggers. In circum-
stances where the object of the trigger is to link to another
card, then the link associated with the triggers is simply the
target card. Where other functionality is required, the trigger
can initiate the desired action(s) and also link to a target card
if appropriate.

It should be appreciated that it may be desirable to define
somewhat different card transition behaviors for different
cards in the shopping purchase sequence. For example, a left
swipe on Receipt Confirmation Card 326 (FIG. 8H) may be
arranged to return the user to the card from which the pur-
chase sequence began—i.c., Gallery Card 316 (FIG. 8A) or
some other location within the receipt deemed appropriate by
the wrap author. It may be desirable for a right swipe on
Receipt Confirmation Card 326 to cause a transition back to
the Purchase Summary Card 325 but to have the state of the
Purchase Summary Card 325 changed to provide an “Order
Submitted” message in place of Complete Order button 419.

The desired behavior of Purchase Summary Card 325 may
be more complex. For example, when the Purchase Summary
Card 325 is in the state shown in FIG. 8G (i.e., the purchase
order has not yet been committed), it may be desirable to have
a right swipe transition the wrap back to Shipping Informa-
tion Card 324 and to disable a left swipe since the author may
not want to commit a purchase transaction without an affir-
mative selection of the “Complete Order” button by the user.
Conversely, when the Purchase Summary Card 325 is in the
“Order Submitted” state (not shown), it may be desirable to
allow the user to left swipe back to the Receipt Confirmation
Card 326, whereas a right swipe might transition the wrap

US 9,285,977 B1

33

back to the Gallery Card 316 (FIG. 8A), where the purchase
sequence began, or some other predetermined landing card.
In still other implementations, the right swipe could be dis-
abled if desired. Regardless of the desired card transitioning
behavior, the desired behavior can readily be defined using
the behavior definitions described above. Importantly, the
behavior definitions can also take the current state of the cards
into the account in determining the card transition logic. It
should be apparent that any of the described cards can be
arranged to interact with vendor e-commerce websites (e.g.,
Shopify APIs), back-end e-commerce systems, platforms and
the like.

In the embodiment illustrated in FIGS. 8A-8H, the pur-
chase ofa productis accomplished through a series of sequen-
tial cards designed to illicit from the viewer the information
necessary to complete the electronic transaction. In an alter-
native embodiment, the content of these cards, including the
various data entry fields, can also be implemented in one or
more gallery cards. In such embodiments, the viewer would
be required to scroll up and down the gallery card(s) and enter
the appropriate information in the displayed data entry fields.

In the illustrated card deck, Order Summary Card 322 and
Purchase Summary Card 325 are described as separate cards.
It should be appreciated that the functionality of these two
cards could be implemented as a single card shown in two
different states, with the Order Summary state (e.g., the state
shown in FIG. 8D) being shown when purchaser information
is still missing and the Purchase Summary state (e.g., the state
shown in FIG. 8G) being shown when all needed purchaser
information is present.

A potential advantage of using an installed or native wrap
package application based viewer is that user information can
be securely stored within the viewer and, if desired, automati-
cally associated with the order as appropriate, thereby poten-
tially eliminating the need to render the Billing and Shipping
Information Card 323, 324.

In still other implementations, the stored user information
can be auto-filled into the various cards. It can be imagined
that the desired card sequences may vary significantly based
on both the current state of a particular card and what persis-
tently stored user information is available to the wrap. The
ability to simply select/declare a desired behavior from a
palette of predefined card behaviors give card authors (and
template designers) a powerful tool for providing complex
card behaviors without requiring the authors to learn or
understand the intricacies of card navigation programming.
Rather, system designers can define a number of card behav-
iors that are believed to be useful, and any of those predefined
behaviors can be used by the template designers and card
authors. If new card behaviors are desired, they can readily be
written and added to the card behavior definitions 60.

One-Click Buying

Wrap packages are also conducive to facilitating “one-
click” buying. For example if a viewer has previously set up
an account and registered for one-click purchases, a purchase
transaction could be initiated by simply selecting the “Buy
Now” trigger 327 appearing in FIG. 8A for example. In an
alternative one-click embodiment, the viewer can add one or
multiple items into a shopping cart. Then by selecting a “Buy
Now” trigger, the item(s) in the shopping cart will automati-
cally be purchased.

Serving a Wrap Package

There are a number of items associated with defining and
rendering a wrap package. These include the wrap descriptor

10

15

20

25

30

35

40

45

50

55

60

65

34

40, the wrap runtime viewer 50, the referenced assets 65, and
when appropriate, the behavior extensions 62 and/or state
descriptor 68. On the wrap server side, these items may be
stored in any arrangement that is deemed appropriate for
securely delivering the various items in an efficient manner.

Conceptually, the various wrap items may be thought of as
being stored separately from one another as illustrated in F1G.
9A. By way of example, these may include one or more of
each of: a wrap package descriptor store 140 that stores wrap
descriptors 40; a wrap viewer store 150 that stores the runtime
viewer(s) 50; a state descriptor store 168 that stores the state
descriptors 68, an extensions store 162 that stores extensions
62; and an assets store 165 that stores assets 65. In various
embodiments, it is understood that the assets 65 used to
populate wrap packages 10 may be obtained from any avail-
able source and there is no requirement that all of the assets be
contained or included in a single store.

Although the various stores are shown separately for
emphasis, it should be appreciated that their respective func-
tionalities can be combined into one or more physical store(s)
in the same or different locations in any desired manner.
Furthermore, each of these store items is discretely cacheable
both on the network side and on individual devices.

In non-exclusive implementations, the wrap distribution
environment as depicted in FIG. 9A may be configured as a
Content Delivery Network (CDN), meaning that servers and
stores are deployed at different data centers across the Inter-
net. As a CDN, the wrap distribution environment is prefer-
ably optimized to serve various wrap packages to a large
numbers of users with minimal delays.

In the wrap descriptor framework described above, much
of'the actual content of the cards (e.g., assets 65) is maintained
outside of the wrap descriptor 40. That is, many, most or all of
the wrap package’s assets are referenced within the wrap
descriptor 40 rather than being stored within the descriptor
40. Thus, the wrap descriptor 40 can be quite small even for
large wraps that are rich in media content. As a result, the
wrap package (i.e., the wrap descriptor 40) can be quickly
downloaded while still providing the viewer with a full
description of the entire wrap structure. This separation of
assets from the descriptor helps make wrap packages highly
portable.

An asset 65 referenced by a card 14 of a wrap 10 assets can
be downloaded to the consuming device 12 using any desired
scheme. By way of example, in some scenarios, the assets 65
associated with any particular card 14 can be downloaded on
an “as needed” basis, only when the card is to be displayed or
is expected to soon be displayed. In other scenarios various
caching schemes can be use, whereby the assets associated
with nearby cards are downloaded while a given card is dis-
played. In still other scenarios the downloading of some, or
all, of the wrap package assets is begun shortly after the wrap
descriptor is received and, when necessary, other assets are
downloaded on an as needed or other appropriate basis.

Referring next to FIG. 9B, another embodiment of an envi-
ronment for the creation and distribution of wrap packages
will be described. The environment includes one or more of
each of wrap descriptor server/store 140, runtime viewer
server/store 150 and asset stores 165. A browser 151 or runt-
ime viewer app running on a communication device 12 com-
municates with the server/stores through an appropriate net-
work (e.g., the Internet), which is preferably configured as a
content delivery network CDN. The runtime viewer server/
store 150 is arranged to store and deliver the runtime viewer
50, extensions 62 and/or a shim 400 (described later) upon
request. That is, requests for the runtime viewer 50, exten-

US 9,285,977 B1

35

sions 62 and shim 400 are directed towards and fulfilled by the
runtime viewer server/store in the illustrated embodiment.

The wrap descriptor server/store 140 is arranged to store
and deliver upon request the wrap descriptors 40, state
descriptors 68 and any other personalization information 69
relevant to a particular user. Thus, requests for specific wrap
descriptors 40, state descriptors 68 and any other personal-
ization information 69 are directed towards and fulfilled by
the wrap descriptor server/store 140. The state descriptor
store(s) 168 and personalization store(s) 169 may be con-
tained within the wrap descriptor server/store 140. When
desired, multiple different wrap descriptors server/stores 140
may be used and/or the state descriptors 68 and/or personal-
ization information 69 can be stored and delivered from other
locations.

As previously mentioned, the assets 65 may be stored at a
wide variety of different locations as diagrammatically rep-
resented by asset stores 165. Wrap authoring tools 35, man-
agement tools 37 etc. can also communicate with wrap
descriptor server/store 140 and asset stores 165 as appropri-
ate. The authoring tools may access existing wrap descriptors
40 to facilitate new wrap creation, wrap mixing and/or wrap
editing (when permitted). The authoring tools would also
access the wrap descriptor server/store 140 to upload new
wrap descriptors, etc. Similarly, assets stores 65 may be
accessed and/or added to as part of the wrap creation process.
Similarly various management tools 37 may be arranged to
communicate with the various stores to facilitate any desired
management, tracking and other functionality.

Referring to FIG. 10, a representative process suitable for
delivering wrap packages is described. In the illustrated
embodiment, a server (e.g., publication server node 22 or
runtime viewer server/store 150) initially receives a request
for a particular wrap package 10 (step 190). In embodiments
in which the wrap ID 42 is a URL, the request can be invoked
at a requesting device 12 simply by activating (e.g., clicking
on or otherwise selecting) a link that contains or otherwise
defines the URL. Thus, the wrap 10 can be accessed from
virtually any platform capable of accessing a web link. As
previously discussed, a cover that represents the wrap may
include the wrap ID URL and thus the request can be invoked
by simply clicking on a cover which may be embedded in a
web page or an ad served in conjunction with a web page,
embedded in a messages, such as an email, a text or SMS
message, embedded in a Twitter tweet, or may be included
with any other delivery mechanism that supports the embed-
ding of a link.

When the server receives the request it identifies and
fetches the desired wrap package 10 based on the wrap 1D 42,
contained in the target URL (step 192). The server also deter-
mines the run-time environment on the requesting device
(step 194). This can be accomplished using standard boot-
strap queries to the requesting device 12. The determination
of the run-time environment will typically include an identi-
fication of the type or class of the requesting device 12 and
viewing software, such as the operating system of the device
12 and/or a particular browser that the device 12 may be
using. For example, the determination would typically ascer-
tain the particular model of the requesting device (e.g., an
Apple iPhone 6 Plus, a Samsung Galaxy S4, or other particu-
lar smart phone, tablet, laptop computer, desktop computer,
smart watch, etc.) and the version of the software (e.g.,
browser or app) that is making the request, etc., and whether
or not the requesting device has an installed wrap viewer or
not. Of course, the server can also ask the requesting device
for any additional information considered useful.

10

15

20

25

30

35

40

45

50

55

60

65

36

A determination is also made regarding whether a runtime
viewer is already present on the requesting device (step 196).
If a suitable viewer is present on the requesting device (e.g.,
the device has a wrap viewer app installed thereon or a
browser based viewer is already present on the device), the
requested wrap is delivered without a viewer in step 197.
Alternatively, if a viewer is not present on the device, an
appropriate run-time viewer 50 is delivered together with the
requested wrap in step 198.

The delivered wrap package 10 is opened and consumed by
the user on the device 12 via either a browser operating in
cooperation with a wrap viewer 50 or the wrap package app.
In either case, the layout of the cards 14 is customized for
display on the screen of the requesting device 12. Once
opened, the user can view, experience and interact with the
wrap package 10 as intended by the author.

Regardless of whether the wrap viewer 50 is already
present on the requesting device or is supplied together with
the wrap 10, the presentation tools 55 are responsible for
rendering the wrap 10 in a format suitable for the requesting
device. Thus, when the wrap 10 is rendered, all of the content
of the card(s) 14 is preferably arranged to fit on the display
screen without the user needing to manually size the screen or
scroll through the card, unless the card is specifically
designed for scrolling such as may be the case with a gallery
type card. This can be done because the presentation tool 50
knows the screen dimensions for the rendering device 12 and
selects the presentation that is optimized for the particular
display on the requesting device 12.

In a nonexclusive embodiment, the browser based versions
of the run-time wrap viewer 50 may be written in a widely
accepted format that can be executed by general purpose
browsers operating on most any device. By way of example,
JavaScript currently works well for this purpose, although
other frameworks may be used as well. In some embodi-
ments, the viewer 50 is a general purpose viewer that includes
many, most, or all of the viewer tools and behavior definitions
60 that are available in the wrap ecosystem so that virtually
any wrap can be viewed and all of its featured implemented
using the accompanying viewer. In other embodiments, it
may be desirable to provide a more compact viewer that
includes a basic set of viewer tools and behavior definitions
that is suitable for rendering and interacting with most wraps,
or a basic set accompanied by any additional tools/behavior
definitions that deemed necessary to render and/or interact
with the specific wrap delivered.

It is anticipated that as the popularity of wrap packages
increases, more users will install wrap viewers on their
devices in the form of mobile apps, applications, browser
plug-ins, etc., which is expected to reduce the proportion of
wrap requests that require run-time delivery of a browser
based viewer.

Referring next to FIG. 11, an alternative, browser based
process for requesting, delivering and rendering wrap pack-
ages will be described. This embodiment is well suited foruse
with the multi-tier wrap engine architecture of FIG. 9B. In
this embodiment, the runtime instance of the wrap package is
constructed locally at the requesting device based on the wrap
descriptor at runtime. Such an approach may have several
potential efficiency related advantages over the process
described with respect to FIG. 10 including supporting sim-
pler wrap caching strategies.

Initially, in step 202, a browser 151 on a requesting device
12 requests a particular wrap package 10 using the wrap 1D
42. As previously described, in embodiments where the wrap
1D 42 is a URL, the request can be invoked at a requesting
device 12 simply by activating (e.g., clicking on or otherwise

US 9,285,977 B1

37

selecting) a link that contains or otherwise defines the URL.
Thus, the wrap 10 can be accessed from virtually any platform
capable of accessing a link. In the embodiment of FIG. 9B,
this request is directed to the runtime viewer server/store 150,
although in other embodiments, the same function can be
performed by wrap server node 22.

When the runtime viewer server/store 150 (wrap server
node) receives the request, it returns a generic HTML shim
400 to the requesting device 12 (step 204) rather than directly
returning the requested wrap at this stage. The shim opens
into a page (e.g., a blank browser webpage) that will be
populated with the wrap and includes scripts suitable for
initiating the process of accessing and rendering the
requested wrap package 10.

By way of example, FIG. 13 illustrates a nonexclusive
embodiment of a shim 400 suitable for use for this purpose.
The primary function of the illustrated shim 400 is to provide
a mechanism for calling the runtime viewer 50. This is
accomplished by script tag 1402 in the illustrated embodi-
ment. Thus, the shim 400 ensures that the requesting device
has, or obtains a runtime viewer suitable for handling the
wrap before the wrap is actually delivered.

In a non-exclusive embodiment, the shim is implemented
in HTML code that is delivered to a browser in step 204 in
response to a wrap request 202. As can be seen in FIG. 13, the
shim 400 is a highly compact. It includes a script tag 1402, a
default page title 1403, a style sheet 1405 that defines the
initial layout of the page that will hold the wrap, an iconimage
1407, and a div 1409. The script tag 1402 is primarily respon-
sible for requesting the runtime viewer 50. The default page
title 1403 is the label that is typically displayed in the browser
tab associated with the blank window page that the wrap is
opened into (the page title 1403 is simply “wrap” in the
illustrated embodiment). The style sheet 1405 defines the
layout of the page that is initially displayed, which is essen-
tially blank at the initial stage. In the illustrated embodiment,
CSS is used to define the page layout, although any other
layout definition that can be interpreted by the browser can be
used. The icon image 1407 is an image that some browsers
display in the browser tab adjacent the title. The div 1409
causes the browser to allow the runtime viewer to rewrite the
DOM for the page starting from that defined div node.

Returning to FIG. 11, the browser that receives the shim
400 will typically handle the runtime viewer request by first
checking to see whether an appropriate runtime viewer 50 is
already present on the device (step 206). If so, the runtime
viewer 50 is launched in step 212. If a suitable runtime viewer
is not already present on the requesting device, a suitable
viewer is requested and delivered to the requesting device
(steps 208/210) and launched by the browser (step 212). In the
embodiment of FIG. 9B, the runtime viewer request is also
directed to runtime viewer server/store 150.

The downloaded runtime viewer may be written in a format
that can be executed by most browsers so that the same
generic runtime viewer may be used to view any wrap on
virtually any computing device that contains a general pur-
pose browser. By way of example, JavaScript is a dynamic
programming language that is currently well supported by
most browsers, and is therefore, well suited for use in the
runtime viewer. Of course, other now existing of later devel-
oped programming languages and frameworks may be used
in other embodiments.

Once the runtime viewer 50 launches, it requests the wrap
based on the wrap ID 42 used in the initial request. In a
non-exclusive embodiment, the request may take the form of
WRAPL.WRAP.CO/WRAP/<WraplD>, where <WrapID>is
the wrap ID 42. In response, the browser or viewer will

10

15

20

25

30

35

40

45

50

55

60

38

typically check to see whether the wrap descriptor 40 corre-
sponding to the wrap 1D 42 is available locally (step 213). If
not, the wrap descriptor 40 is requested from and returned by
the wrap descriptor store 140, as represented by steps 214,
216.

In embodiments where the initial wrap request comes from
an executing runtime viewer (as for example from a native
viewer app), then there would be no need for steps 204-212
and the initial wrap request 202 would initially check for the
requested wrap descriptor locally (step 213) and proceed
from there.

Once the wrap descriptor 40 is received, it is processed by
the runtime viewer 50 resulting in the construction and ren-
dering of the wrap in the browser page associated with shim
400. Some of the steps performed or caused by the runtime
viewer 50 as it processes the wrap descriptor 40 are schemati-
cally represented as elements 218-234 in the flow chart of
FIG. 11. Although a particular flow is illustrated, it should be
appreciated that the described steps are functional in nature
and are not necessarily performed in the illustrated order.

While processing the wrap descriptor 42, the runtime
viewer 50 determines whether the wrap package 10 has an
associated state descriptor 68 (step 218). As discussed above,
it is contemplated that many wrap packages will not have an
associated state descriptor while others will. A number of
mechanisms can be used to indicate the intended/expected
presence of a state descriptor 68. By way of example, in some
embodiments, the wrap descriptor 42 includes a state descrip-
tor flag (not shown) that indicates whether a state descriptor
68 is intended to be associated with the wrap. In such embodi-
ments, the runtime viewer 50 determines whether to request
the state descriptor 68 based on the status of the state descrip-
tor flag. In another example, wraps 10 that require state
descriptors 68 may be arranged to simple declare the exist-
ence of an associated state descriptor and the runtime viewer
may be arranged to request the appropriate state descriptor. If
astate descriptor 68 is intended, it is requested and received as
diagrammatically represented by step 220. In the embodi-
ment of FIG. 9B, any state descriptor requests are directed to
wrap descriptor server/store 140, although they may be
directed to wrap server 22 or other suitable stores in other
embodiments. Typically, the browser or runtime viewer
would first check to see if the state descriptor is cached or
stored locally before sending a request to the server.

Another step performed by the runtime viewer 50 is deter-
mining if the wrap 10 has any associated behavior extensions
68. As discussed above, the wrap 10 may have a number of
associated behaviors. The runtime viewer 50 may internally
support many, most or all such behaviors. However, to help
keep the runtime viewer 50 relatively compact while support-
ing a wide variety of functionality, the runtime viewer 50 is
configured to support additional extensions 62 that may be
utilized to define additional behaviors. Thus in step 222, the
runtime viewer 50 determines whether any extensions 62 are
needed to properly render the current wrap (step 228). If yes,
the needed extensions are requested and retrieved (step 226).
There are a number of mechanisms that can be used to trigger
the extension request(s). For example, the wrap descriptor 40
may be arranged to identify the needed extensions 62 such
that they can be retrieved as a group early in the wrap render-
ing process. In other embodiments, the extensions 62 may be
retrieved on an as needed basis as the descriptor 42 is pro-
cessed or in any other suitable manner. In still other embodi-
ments, the required extensions 62 (which may be written in
JavaScript or other suitable form) may be included as part of
the descriptor 42 itself—as for example, in a block after the
card descriptors or at the end of the descriptor. In such cir-

US 9,285,977 B1

39

cumstances there would be no need to separately request the
extensions. Regardless ofthe embodiment used to retrieve the
extensions 62, or if no extensions 62 are needed, the runtime
viewer 50 generates the HTML for the requesting device 12 in
step 228. In the embodiment of FIG. 9B, any extension
requests are directed to the runtime viewer server/store 150.

The runtime viewer is arranged to process the wrap
descriptor 40 in a manner that generates the HTML appropri-
ate for rendering the wrap on the requesting device (Step
228). This processing is described in more detail below with
respect to FIG. 12.

As part of the processing and rendering, the assets 65
associated with the various cards 14 associated with the wrap
10 are retrieved in step 230. In many cases, the assets 65
associated with a particular card will be retrieved as their
associated card descriptors are processed during the wrap
descriptor processing. However, it should be appreciated that
the actual timing of the asset requests may be widely varied.
For example, in some circumstances it may be desirable to
only download certain assets 65 when the associated card is
displayed or just prior to the card being displayed, in accor-
dance within some predetermined caching strategy. In some
embodiments, the runtime viewer 50 determines the timing of
the asset requests, while in other embodiments, such deci-
sions may be delegated to the browser. As previously dis-
cussed, the assets may be stored at a variety of different
locations as diagrammatically illustrated as asset stores 165
in the embodiment of FIG. 9B.

As the wrap descriptor is processed, the wrap is rendered
on the requesting device by populating the tab or page opened
by shim (step 234).

In some circumstances the initial wrap request may come
from a runtime viewer that is already open and executing. In
such circumstances it may be desirable for the runtime viewer
to directly request any needed wrap descriptors from the wrap
descriptor storage server (e.g. wrap descriptor store 1040).
Such a process would effectively skip described steps 202-
212.

Rendering Wrap Packages

Wrap packages are each an abstract, platform-independent
data structure containing all the information needed for a
wrap runtime engine 50 to render the wrap and facilitate its
interaction and behaviors. Although a non-exclusive imple-
mentation of the wrap runtime is in the Javascript program-
ming language for execution within a conventional web
browser using HTML and CSS, the wrap runtime could also
be implemented using other languages and technologies spe-
cific to different operating systems and devices. Since the
runtime engine 50 renders the wrap at the time of consump-
tion, it can optimize the rendering and interface for the device
it is running on as well as dynamically generate content based
on context.

Referring next to FIG. 12, a process of generating and
updating the view of the wrap 10 during rendering is
described. Initially, in step 251, the runtime viewer 50 gen-
erates an object graph based on the descriptor 40. The object
graph serves as the state model for the wrap. In the illustrated
embodiment, the wrap descriptor 40 uses the JSON data
format. In general, the object graph is arranged to represent
the structure of the wrap document in a manner that: (1) is
simpler to transform for presentation; and (2) that makes the
behaviors and styling information readily available for the
runtime to apply as needed. The object graph can be created
using a variety of techniques. As will be appreciated by those
familiar with the art, using JSON objects as the wrap descrip-

20

35

40

45

55

40

tors makes runtime generation of the object graph a relatively
simple and straightforward task. The JSON object is trans-
formed into JavaScript objects automatically by the runtime.
Then straight-forward transformations take place to trans-
form the on-disk representation into a runtime object graph
from which it is easier to render the desired views and attach
the desired behaviors.

After the object graph has been built, the runtime viewer
creates a document object model (DOM) based on the object
graph (step 253). The DOM corresponds to the view, and as
will be appreciated by those familiar with the art, the DOM is
a standard representation that may be used directly by the
browser to render the wrap in a conventional manner (step
255). That is, the DOM is an internal representation that can
be directly used by the browser to render the wrap.

Once the DOM has been built, the runtime viewer associ-
ates the appropriate handlers and navigation tools based on
the current model state (step 258). That is, if the first card is
displayed, the viewer will associate the event handlers and
navigation tools with the wrap that are appropriate for the first
card. These include the handlers associated with triggers as
previously discussed.

Thereafter, when a user input event is received from a user
interacting with the wrap, the appropriate handler processes
the received event. This process is diagrammatically repre-
sented by the event loop that begins at step 260.

When an event is received at 260, an event dispatcher
determines whether there is an active handler that matches the
event (step 262). If so, the event is delegated to the matching
handler (step 264), which determines whether the event is
valid (step 265). If valid, the handler acts on the event (step
266) and updates the display status of the model (i.e., the
handler updates the state of the object graph model). In step
268, the view state is then updated as needed based on the new
model state. Any time the view state changes, the active
handlers are updated as necessary based on the new (i.e., then
current) model state (step 269). Thereafter, control is returned
back to step 258 and the above process is repeated if a new
event is received in step 260.

To give a specific example, consider the navigation behav-
iors that might be associated with the first card 311 of wrap
310 illustrated in FIG. 7A. In a simple example, the only
permitted navigational behavior for card 311 may be a left
swipe gesture, which is arranged to flip the displayed to the
second card 312 shown in FIG. 7B. In such a case, when the
first card 311 is rendered and displayed, the only valid navi-
gational handler associated with the wrap in step 258 would
be a left swipe handler arranged to cause the display status of
the model to change to the next card 312 of FIG. 7B in
response to a left swipe. In this state, the only time the event
dispatcher will find an active matching handler is when a left
swipe event is detected. Thus when a left swipe is detected,
the event dispatcher would delegate the event to the left swipe
handler (step 264), which is validated in step 265 and acted
upon in step 266 by updating the display status in of the model
(i.e., making the next card active—in this case second card
312)—which in turn will cause the view state to update to the
second card (step 268) and a new state model in step 269.

As previously discussed, the navigation behaviors for the
second card 312 are somewhat different than the navigation
behaviors for the first card. The left swipe handler remains the
same (i.e., causing a transition to the next card)—however a
right swipe is now relevant and will cause a transition to the
previous card (i.e., back to the first card 311). Thus, in step
258 and 269, a right swipe handler would be activated when
the model state transitions to the second card.

US 9,285,977 B1

41

Of course, there may be a wide variety of different handlers
that are appropriate for specific cards and/or model states. In
some circumstances the same gesture may invoke different
behaviors based on the active card or model state. For
example, a left swipe gesture made on the last card may
invoke an animation that gives the appearance of the card
beginning to flip, but then springing back, to graphically
suggest that the displayed card is the last card. To facilitate
this, a final card left swipe animation handler may be acti-
vated when the last card is displayed, whereas the left swipe
page transition handler would be deactivated.

The handlers associated with triggers are also particularly
important to the wrap environment. For example, selection of
a trigger component (e.g., by tapping at any location on a
screen within the bounds of a displayed trigger component)
may activate the trigger. Of course a wide variety of different
events can be used to activate a trigger. In many instances, the
events will be user initiated events such as selection or tap-
ping of a trigger through the performance of a selection ges-
ture or based on some other user input. In other circumstance,
the activating step may system generated (e.g. an elapsed
time, a sensor input that exceeds a threshold, the receipt of a
particular message or a very wide range of other potential
events).

Once activated, a trigger may exhibit any desired behavior
which can be associated with the trigger through appropriate
behavior declarations 95. By way of example, if the trigger is
alinking trigger, the trigger may initiate a navigational link to
another card or wrap, or link to an external webpage once
activated using a defined linking behavior (e.g., open in same
tab, open in new tab, etc.) Other triggers can have a wide
variety of different associated behaviors to support almost
any type of application functionality.

As discussed above, the runtime viewer may be arranged to
execute in a browser 151. In a nonexclusive embodiment, the
runtime viewer may include a runtime engine having an
object graph building module, a DOM building module, an
event handler, and a behavior engine. The object graph build-
ing module is arranged to process a wrap descriptor 40 to
create an object graph that serves as the runtime instance of
the wrap. The DOM building module uses the object graph, to
create a document object model (DOM) that serves as a
browser readable instance of the wrap. The event handler is
arranged to handle events that are received once a wrap has
been rendered. The behavior engine includes a library of
behavior definitions 60. In embodiments that support behav-
ior extensions 62, the behavior engine is also arranged to
obtain behaviors extensions 62 from external stores as nec-
essary. Such behavior extensions 62 may be arranged as a
bundle or package of behaviors or as individual behavior
definitions.

In a nonexclusive embodiment, the object graph 510 may
include an ordered card list, a set of cards definitions and an
asset load state tree. The card list represents the order of the
cards and provides a simple mechanism for supporting linear
navigation through the card set. The card list may use a wide
variety of different formats. By way of example, a doubly
linked list works well in many applications.

The card definition includes a card definition for each card
in the wrap. The card definition includes each of the compo-
nent objects of the card and associates all of the relevant assets
and attributes (including styles, behaviors, etc.) with the
respective components.

The asset load state tree is a data structure that identifies
each asset that is referenced in the wrap descriptor and indi-
cates whether the referenced asset has been loaded into the
runtime. In some embodiments, the asset load state tree takes

30

40

45

42

the form ofa tree of semaphores. Each time an asset is loaded,
the corresponding entry (e.g. semaphore) in the asset load
state tree is changed from a “not loaded” to a “loaded” state.
In this way, the runtime can quickly determine whether any
given asset is already present when rendering a card.

Wraps as Messages

The described wrap packages 10 are essentially cloud
based portable data objects that can readily be distributed
using a wide variety of electronic techniques including mes-
saging, posting and inclusion as links in documents, articles
or other electronic communications. The wrap package 10
thus allows authors to take applet and website functionality
and make them consumable as a message, delivered in a
narrative storytelling format. This allows the transformation
of an app or website functionality into a portable, sharable,
and savable wrap package 10, that can be distributed like
electronic messages (e.g. email, SMS, text) are disseminated
today. For example as illustrated in FIG. 7M, the media trig-
gers 381 and 383 can be used to share the wrap package 310
with others via Facebook Twitter. Although in this embodi-
ment actual triggers for sharing are provided within or
embedded in the wrap itself, this is not always necessary for
sharing the wrap. Alternatively for example, the cover 15 that
includes a URL associated with the wrap (e.g., the wrap ID
42) can be posted on a social media site or feed, email to
others, or otherwise distributed using an electronic commu-
nication protocol or platform.

Not only are the wrap packages 10 easy for publishers and
others to distribute, but viewers and other recipients of a wrap
may also readily share a wrap with their friends, family,
coworkers, colleagues, etc. This is a powerful construct that
can greatly extend or enhance the market (or other target
segment) reach and penetration of a well designed wrap since
a “message” from a friend or acquaintance is often more
favorably received than a message from an unknown party.
Neither applets nor websites are well suited for such viral
distribution.

Since the set of cards 14 that make up a wrap package 10
are encapsulated as a data object and can be sent as a unit, the
wrap package 10 can also readily be stored on a viewer’s
device if the viewer so desires. Contrast this with a conven-
tional multi-page website which is not designed to be persis-
tently stored on a viewer’s device as a unit, even if individual
pages may sometimes be cached. It also eliminates third party
aggregator (e.g., the Apple App Store; Google Play, etc.)
control over the delivery of a company’s services/messages to
its customers as occurs in the distribution of conventional

apps.

Benefits and Advantages of Wrap Packages

Wrap packages 10 offer a number of benefits and attributes
currently not available with conventional methods of distrib-
uting content, such as with PDFs, web sites, or stand-alone
apps. Since cards 14 can be sequenced and authored to
include media content, application functionality, and e-com-
merce related services, wrap packages 10 have the unique
ability to narrate a story, in a book-like format, that captures
and holds the attention of the viewer, while also offering an
“app” like user experience. As such, wrap packages 10 offer
a new web-based platform for story telling, communicating
ideas, and delivering highly visual and functional user expe-
riences. Wrap packages 10 thus enable a new business para-
digm for selling, advertising, publishing, increasing brand
loyalty, offering services, and contacting and engaging new

US 9,285,977 B1

43

and old customers alike, all ideally delivered to consumers on
their mobile devices, where they spend their time and con-
sciousness. Where businesses used to have to build destina-
tions (e.g., websites) or monolithic systems (e.g., “apps”),
they can now, instead, provide consumers with wrap pack-
ages 10, that are delivered like messages, and that provide the
user experiences and functionality they really want and need.
As a result, wraps 10 create opportunities for business to
innovate and improve products and services, leveraging the
mobile web in ways not before possible, because a conve-
nient, enabling interface and platform did not previously
exist.

Wrap packages 10 are also like interactive messages that
can be easily shared, delivered over the mobile web, and
locally stored. With the ability to share, distribute over the
mobile web and locally store, popular wrap packages can
readily go viral.

Wrap packages 10 are also preferably delivered using a
SaaS (Software as a Service) model, meaning wrap packages
are delivered only on an as-needed basis.

Wrap packages can be authored by anyone, from an indi-
vidual with little technical or design skills, to large and
sophisticated enterprises.

Wrap packages 10 can be distributed narrowly to a specific
or targeted person or persons or widely distributed to many,
many persons.

Wrap packages 10 can be written once and can run on just
about any browser enabled device. As a result, wraps are not
platform, operating system, or device dependent.

Since wrap packages 10 can be easily generated and
optionally dynamically updated with new content, wrap
packages can be used as a digital “corollary” or “companion”,
accompanying the sale or rental of goods and/or services. For
example, wrap packages can be created and distributed as an
“Active Receipt” accompanying the sale or rental of a good or
service. The merchant can thus provide through the wrap
package 10 ongoing contact and support to on-board, up-sell
and/or cross-sell the customer with ancillary goods and/or
services, potentially for the entire life cycle of the product or
service, all delivered in a digital format that never gets lost or
misplaced. Accordingly, wrap packages can be used as an
essential component of any product or service, delivering
better customer service and creating new selling opportuni-
ties.

In summary, wrap packages 10 introduce the “narrative
web”, which is a storytelling mobile user interface, delivered
over a cloud-based platform, ushering in a digital evolution of
mobile marketing and customer relationship management. As
a marketing tool, wrap packages 10 have the unique ability to
increase mobile engagement, lead generation, and conver-
sion, enabling businesses to increase sales, improve loyalty,
and enhance customer relationships and loyalty. Wrap pack-
ages 10 thus offer a compelling business proposition by solv-
ing one of the biggest problems in the mobile space of today;
namely the lack of connectivity between apps. With wrap
packages 10, however, consumers and other users can enjoy a
multi-function app-like experience, without having to be in
an app, download an app, or open any apps.

Finally, while many of the benefits and attributes of wrap
packages 10 are realized on mobile devices operating on the
mobile web, it should be made clear that there is nothing
inherent with wrap packages 10 that limit their usefulness or
functionality in non-mobile environments. On the contrary,
wrap packages 10 can also be used, and all the same benefits
and attributes realized, on non-mobile devices, such as desk-
top computers and/or smart TVs for example.

10

15

20

25

30

35

40

45

50

55

60

65

44

The present invention is thus intended to be broadly con-
strued to cover any system and method, such as carousel ads
for example, that enables publishers and marketers to tell
sequenced stories with (i) a combination of images, photos,
text, video and other types of media, (ii) a swipe-able format
that enables viewers to navigate the media displayed in one
screen shot or frame to the next, and (iii) includes embedded
app-like functionality and/or links to other locations that pro-
vide additional information or such functionality and/or ser-
vices. Consequently, the present application should not be
construed to just those specific embodiments as described
herein.

Inthe primary described embodiments, all of the behaviors
are declared rather than being stored in-line within the
descriptor. Thus, the descriptor itself does not have any pro-
grammable logic. In many embodiments, the declared behav-
ior are all defined within the runtime viewer such that the
runtime view can readily associate the desired behavior with
the wrap, card or component as appropriate in a runtime
instance of the wrap. It should be appreciated that this is a
particularly powerful framework for enhancing portability of
the wraps. With the descriptor/runtime viewer approach, a
single item (the descriptor) can be used to define all of the
content and functionality of a set of cards that can be rendered
on virtually any platform. The declared functionality is pro-
vided (or obtained) by the runtime viewers when the wrap is
to be rendered so that the author of the wrap is not required to
know or understand any of the idiosyncrasies of any particu-
lar platform. The runtime viewer may be a generic runtime
viewer (e.g., a viewer executable by a conventional browser)
or may be native viewer customized for a particular platform.
Regardless of the underlying platform, the runtime viewer
handles the tasks of associating the declared behaviors with
the wrap/cards/components which frees the wrap author and/
orauthoring tool from having to ensure that desired behaviors
are programmed correctly for all of the different platforms
that the wrap may be rendered on.

In most implementations, all of the sizeable assets that
serve as content of the wrap are referenced in the wrap by
appropriate identifiers rather than being stored directly in the
wrap. This again significantly enhances portability by keep-
ing the size of the descriptor small while facilitating the use of
rich media content.

From the foregoing it should be apparent that the described
wrap packages provide businesses with a powerful tool for
engaging their customers, suppliers, employees or other con-
stituents in a format that is particularly well tailored for dis-
play on mobile devices.

Although only a few embodiments of the invention have
been described in detail, it should be appreciated that the
invention may be implemented in many other forms without
departing from the spirit or scope of the invention. For
example several specific wrap descriptor structures have been
described. Although such descriptor structures work well, it
should be appreciated that the actual descriptor structure may
vary widely. For example, in some embodiments some spe-
cial behaviors can be defined within a wrap descriptor if
desired. Such in-line behavior definition might be particularly
useful in association with certain behavior extensions that are
not otherwise readily available. For example, JavaScript can
be included within a JSON object and various other descriptor
structures. Thus, when JSON descriptors are used, selected
behaviors or behavior overrides can be defined in-line using
JavaScript if desired. Although programmed functionality
can be included in some circumstances, it should be appreci-
ated that liberal definition of behaviors within a wrap tends to

US 9,285,977 B1

45

defeat some of the primary advantages of the described
descriptor/runtime viewer framework.

In many implementations much of the actual content of the
wrap will be referenced by the descriptor rather than being
stored in-line within the descriptor. However, the balance
between in-line storage and references to external assets in
any particular wrap descriptor may be widely varied any-
where from 100% referenced content to (at least theoreti-
cally) 100% in-line content—although the later is less desir-
able for media rich content and again, begins to defeat some
of the advantages of using the descriptor approach. The
choice between in-line and referenced content will typically
be dictated in large part by the relative size of the content. For
example, text, which tends to be very compact, is generally
more suitable for inclusion in-line, whereas more graphic
media, images, videos and/or audio files are typically more
efficiently referenced.

A few different methods of and architectures for serving
wrap packages and constructing runtime instances have been
described herein. Although only a few approaches have been
described in detail, it should be apparent from the foregoing
that a wide variety other methods and architectures can be
used as well. Therefore, the present embodiments should be
considered illustrative and not restrictive and the invention is
not to be limited to the details given herein, but may be
modified within the scope and equivalents of the appended
claims.

What is claimed is:
1. A JSON (JavaScript Object Notation) wrap descriptor
data object embedded in a non-transitory tangible computer
readable medium, the JSON wrap descriptor arranged to
define the structure, layout and content of a set of cards
suitable for display on a computer display separately from
their presentation, the JSON wrap descriptor comprising:
a plurality of card descriptors, each card descriptor
arranged to define the content, structure and layout of an
associated one of the cards, each card descriptor includ-
ing,
at least one component, each component having content
intended for display when the associated card is ren-
dered,

one or more style attributes, each style attribute being
associated with at least one of the associated card and
a selected component of the associated card, wherein
the style attributes define a presentation style for the
associated card or component, and

a layout description including at least one selected from
the group consisting of (i) a layout definition that
defines the presentation of the associated card in-line
within the associated card descriptor, and (ii) a layout
identifier suitable for use in accessing a layout defi-
nition that is not directly contained within the associ-
ated card descriptor, and

wherein at least one of the card descriptors includes a
behavior declaration arranged to declare a behavior
associated with the corresponding card or an associated
one of the components, wherein the declared behavior is
not defined within the JSON wrap descriptor; and

wherein the cards defined by the wrap descriptor are con-
figured to be swipe browsable and rendered in a linear
horizontal sequence, and at least one of the cards is
configured to be swipe browsable and rendered in a
linear vertical sequence.

2. A wrap environment comprising:

a JSON wrap descriptor as recited in claim 1; and

10

15

20

25

30

35

40

45

50

60

65

46

a runtime viewer arranged to render a wrap instance based
on the JSON wrap descriptor, the wrap instance includ-
ing the set of cards defined by the card descriptors.

3. A wrap environment as recited in claim 2 wherein the
runtime viewer includes a multiplicity of behavior defini-
tions, the runtime viewer being arranged to associate the
declared behavior with the associated card or component
when the associated card is rendered.

4. A JSON wrap descriptor as recited in claim 1 wherein at
least one of the plurality of card descriptors further includes a
source attribute associated, the source attribute identifying a
source external to the JSON wrap descriptor from which the
content associated with the an associated one of the compo-
nents is to be obtained when the associated card is rendered.

5. A JSON wrap descriptor as recited in claim 1 wherein the
content associated with the at least one component of a first
card descriptor among the plurality of card descriptors is text
included inline within the first card descriptor.

6. A JSON wrap descriptor as recited in claim 1 wherein at
least one of the card descriptors includes a trigger arranged to
trigger an action in response to an event that occurs while the
associated card is displayed.

7. A JSON wrap descriptor as recited in claim 6 wherein the
event is selected from the group consisting of:

a user input that selects a component associated with the

trigger while the associated card is displayed;

a system generated event; and

a change of state within the wrap when the wrap is dis-
played.

8. A JSON wrap descriptor as recited in claim 1 wherein:

at least one of the cards is authored to include application-
like functionality.

9. A JSON wrap descriptor as recited in claim 1 wherein at
least one of the components contains a plurality of sub-com-
ponents.

10. A JSON wrap descriptor as recited in claim 9 further
comprising associating a behavior declaration and a trigger
with the at least one of the plurality of sub-component.

11. A JSON wrap descriptor as recited in claim 1 wherein
the JSON wrap descriptor is a BSON (Binary JSON) data
object.

12. A JSON wrap descriptor as recited in claim 2 wherein
the JSON wrap descriptor includes one or more behavior
declarations for one or more behaviors that are not defined
within the runtime viewer, wherein the runtime viewer is
arranged to access one or more behavior extensions corre-
sponding to the one or more behavior declarations when
rendering the wrap instance.

13. A JSON wrap descriptor embedded in a non-transitory
tangible computer readable medium, the JSON wrap descrip-
tor arranged to define the structure, layout and content of a set
of cards suitable for display on a computer display, the JSON
wrap descriptor comprising:

a unique wrap identifier, wherein the JSON wrap descrip-
tor is accessible through the use of the unique wrap
identifier; and

a plurality of card descriptors, each card descriptor being
arranged to define the structure and layout of an associ-
ated one of the cards, each card descriptor including (i)
an associated card identifier that uniquely identifies the
associated card, (ii) at least one component, each com-
ponent having content intended for display when the
associated card is rendered; and (iii) a layout definition
that defines the presentation of the associated card con-
tent; and

wherein at least one of the card descriptors includes a
behavior declaration arranged to declare a behavior

US 9,285,977 B1

47

associated with the corresponding card or an associated
one of the components, wherein the declared behavior is
not defined within the JSON wrap descriptor; and

wherein the cards defined by the wrap descriptor are con-
figured to be swipe browsable and rendered in a linear
horizontal sequence, and at least one of the cards is
configured to be swipe browsable and rendered in a
linear vertical sequence.

14. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a card behavior
declaration that declares a behavior associated with the card
associated with the one card descriptor, wherein the declared
behavior is not defined within the JSON wrap descriptor.

15. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a component
behavior declaration that declares a behavior associated with
a selected one of the components, wherein the declared
behavior is not defined within the JSON wrap descriptor.

16. A JSON wrap descriptor as recited in claim 13 further
comprising one or more style attributes, each of the one or
more style attributes defining a presentation style for an asso-
ciated component and/or card.

17. A JSON wrap descriptor as recited in claim 13 wherein
a first one of the card descriptors further includes:

a source attribute associated with a first selected one of the
components, the source attribute identifying a source
external to the JSON wrap descriptor from which the
content associated with the selected component is to be
obtained when the associated card is rendered; and

wherein the content associated with a second component of
the first card descriptor is text included inline within the
first card descriptor.

18. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a trigger arranged
to trigger an action in response to a user input event that
occurs relative to a component included in the associated card
when the associated card is rendered.

19. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a trigger arranged
to trigger an action in response to an event that occurs when
the associated card is rendered, wherein the event is selected
from the group consisting of:

a system generated event; and

a change of state within the wrap when the wrap is dis-
played.

20. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a trigger, associ-
ated with the at least on component, arranged to trigger an
action in response to an event that occurs when the associated
card is rendered, wherein the trigger is arranged to activate at
least one of:

a link to another card within the wrap;

a link to another wrap; and

a link to a remote website.

21. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the card descriptors includes a trigger arranged
to activate a service in response to an event that occurs when
the associated card is rendered.

22. A JSON wrap descriptor as recited in claim 13 wherein
at least one of the components contains a plurality of sub-
components, the JSON wrap descriptor further comprising at

10

15

20

25

30

35

40

45

50

55

60

48

least one of a behavior declaration and a trigger associated
with at least one of the sub-components.

23. A JSON wrap descriptor as recited in claim 13 wherein
the JSON wrap descriptor is formatted as a data object.

24. A JSON wrap descriptor as recited in claim 13 wherein
the JSON wrap descriptor is a BSON (binary JSON) data
object.

25. A JSON wrap descriptor as recited in claim 13 wherein
the plurality of cards defined by the plurality of card descrip-
tors all have the same size and aspect ratio when rendered.

26. A wrap environment comprising:

a JSON wrap descriptor as recited in claim 13; and

a runtime viewer arranged to render a wrap instance based

on the JSON wrap descriptor, the wrap instance includ-
ing the set of cards defined by the card descriptors.

27. A wrap environment as recited in claim 26 wherein the
runtime viewer includes one or more behavior definitions that
correspond to one or more behavior declarations that are
declared in the plurality of card descriptors, the runtime
viewer associating individual behavior definitions with the
corresponding behavior declarations declared by the card
descriptors associated the cards or the card components as the
cards of the wrap instance are rendered.

28. A wrap package as recited in claim 26 further compris-
ing a state descriptor associated with a particular user,
wherein the state descriptor is arranged to store state infor-
mation relative to the wrap instance.

29. A wrap package as recited in claim 26 wherein the
JSON wrap descriptor includes one or more behavior decla-
rations for one or more behaviors that are not defined within
the runtime viewer, wherein the runtime viewer is arranged to
obtain one or more behavior extensions corresponding to the
one or more behavior declarations when rendering the wrap
instance.

30. A JSON wrap descriptor embedded in a non-transitory
tangible computer readable medium, the JSON wrap descrip-
tor being arranged to define the structure, layout and content
of a set of cards suitable for display on a computer display
separately from their presentation, the JSON wrap descriptor
comprising a plurality of card descriptors, each card descrip-
tor being arranged to define the content, structure and layout
of an associated one of the cards, wherein:

each card descriptor includes at least one component

descriptor, each component descriptor defining selected
content and attributes of an associated component;

the attributes associated with a first one of the components

includes,

a behavior declaration that identifies a behavior associ-
ated with the component, and

at least one style attribute that indicates a style associ-
ated with the content of the component; and

the content of a selected component descriptor includes a

multiplicity of subcomponent descriptors, each subcom-
ponent descriptor defining selected content and
attributes of an associated subcomponent; and

wherein the cards defined by the wrap descriptor are con-

figured to be swipe browsable and rendered in a linear
horizontal sequence, and at least one of the cards is
configured to be swipe browsable and rendered in a
linear vertical sequence.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,285,977 Bl Page 1 of 1
APPLICATION NO. : 14/678316

DATED : March 15, 2016

INVENTORC(S) : Greenberg et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE SPECIFICATION

1. Column 1, line 40, change “shamble” to --sharable--.

2. Column 18, line &, change “FIGS. 71-7K” to --71-7K--.

3. Column 29, line 52, change “text box 16T to --text box 16TT--.

Signed and Sealed this
Seventh Day of June, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

